Pregunta

Using the disc method, find the volume of the solid formed by revolving the region bounded by \( y = x^2 \) and \( y = 0 \) from \( x = 0 \) to \( x = 2 \) about the x-axis.

Ask by Washington Brooks. in South Africa
Jan 26,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The volume of the solid is \( \frac{32}{5} \pi \) cubic units.

Solución

To find the volume of the solid formed by revolving the region bounded by \( y = x^2 \), \( y = 0 \), \( x = 0 \), and \( x = 2 \) about the \( x \)-axis using the **disc method**, follow these steps: ### Step 1: Understand the Disc Method The **disc method** is used to find the volume of a solid of revolution by integrating the area of circular discs perpendicular to the axis of rotation. The formula for the volume \( V \) when rotating around the \( x \)-axis is: \[ V = \pi \int_{a}^{b} [f(x)]^2 \, dx \] where: - \( f(x) \) is the function defining the boundary of the region. - \( a \) and \( b \) are the limits of integration along the \( x \)-axis. ### Step 2: Identify the Function and Limits In this problem: - \( f(x) = x^2 \) (the upper boundary) - The lower boundary is \( y = 0 \) (the \( x \)-axis itself). - The region is bounded from \( x = 0 \) to \( x = 2 \). ### Step 3: Set Up the Integral Using the disc method formula: \[ V = \pi \int_{0}^{2} (x^2)^2 \, dx \] Simplify \( (x^2)^2 \) to \( x^4 \): \[ V = \pi \int_{0}^{2} x^4 \, dx \] ### Step 4: Compute the Integral Integrate \( x^4 \) with respect to \( x \): \[ \int x^4 \, dx = \frac{x^5}{5} + C \] Evaluate from \( 0 \) to \( 2 \): \[ \left. \frac{x^5}{5} \right|_{0}^{2} = \frac{2^5}{5} - \frac{0^5}{5} = \frac{32}{5} - 0 = \frac{32}{5} \] ### Step 5: Multiply by \( \pi \) to Find the Volume \[ V = \pi \times \frac{32}{5} = \frac{32\pi}{5} \] ### Final Answer \[ V = \frac{32}{5} \pi \text{ cubic units} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the volume of the solid formed by revolving the region bounded by \( y = x^2 \) and \( y = 0 \) from \( x = 0 \) to \( x = 2 \) about the x-axis using the disc method, we start by determining the radius of our discs. The radius is given by the function \( y = x^2 \). The formula for the volume \( V \) using the disc method is: \[ V = \pi \int_{a}^{b} [f(x)]^2 \, dx \] In our case, \( f(x) = x^2 \), \( a = 0 \), and \( b = 2 \). Therefore, we have: \[ V = \pi \int_{0}^{2} (x^2)^2 \, dx = \pi \int_{0}^{2} x^4 \, dx \] Next, we evaluate the integral: \[ V = \pi \left[ \frac{x^5}{5} \right]_{0}^{2} \] Calculating the definite integral: \[ V = \pi \left[ \frac{2^5}{5} - \frac{0^5}{5} \right] = \pi \left[ \frac{32}{5} \right] = \frac{32\pi}{5} \] Thus, the volume of the solid is: \[ \boxed{\frac{32\pi}{5}} \]

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad