Using the disc method, find the volume of the solid formed by revolving the region bounded by \( y = x^2 \) and \( y = 0 \) from \( x = 0 \) to \( x = 2 \) about the x-axis.
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To find the volume of the solid formed by revolving the region bounded by \( y = x^2 \) and \( y = 0 \) from \( x = 0 \) to \( x = 2 \) about the x-axis using the disc method, we start by determining the radius of our discs. The radius is given by the function \( y = x^2 \). The formula for the volume \( V \) using the disc method is: \[ V = \pi \int_{a}^{b} [f(x)]^2 \, dx \] In our case, \( f(x) = x^2 \), \( a = 0 \), and \( b = 2 \). Therefore, we have: \[ V = \pi \int_{0}^{2} (x^2)^2 \, dx = \pi \int_{0}^{2} x^4 \, dx \] Next, we evaluate the integral: \[ V = \pi \left[ \frac{x^5}{5} \right]_{0}^{2} \] Calculating the definite integral: \[ V = \pi \left[ \frac{2^5}{5} - \frac{0^5}{5} \right] = \pi \left[ \frac{32}{5} \right] = \frac{32\pi}{5} \] Thus, the volume of the solid is: \[ \boxed{\frac{32\pi}{5}} \]