Pregunta
upstudy study bank question image url

9. Given that \( y=x^{2} \sqrt{9-2 x^{2}} \), (i) state the range of values of \( x \) for \( y \) to be valid, (ii) show that \( y \frac{\mathrm{~d} y}{\mathrm{~d} x}+6 x^{3}\left(x^{2}-3\right)=0 \).

Ask by Luna Hanson. in Singapore
Jan 27,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**(i)** The values of \( x \) must satisfy \( |x| \leq \frac{3}{\sqrt{2}} \). **(ii)** \( y \frac{dy}{dx} + 6x^{3}(x^{2} - 3) = 0 \) is true.

Solución

Let's address each part of the problem step by step. ### Given: \[ y = x^{2} \sqrt{9 - 2x^{2}} \] --- ### Part (i): Determine the Range of \( x \) for \( y \) to Be Valid For \( y \) to be a real number, the expression under the square root must be non-negative: \[ 9 - 2x^{2} \geq 0 \] **Solve for \( x \):** \[ 9 \geq 2x^{2} \\ \frac{9}{2} \geq x^{2} \\ x^{2} \leq \frac{9}{2} \] Taking the square root of both sides: \[ |x| \leq \frac{3}{\sqrt{2}} \] **Conclusion:** \[ x \in \left[ -\frac{3}{\sqrt{2}}, \frac{3}{\sqrt{2}} \right] \] So, the range of \( x \) for which \( y \) is real and valid is all real numbers \( x \) such that \( |x| \leq \frac{3}{\sqrt{2}} \). --- ### Part (ii): Show That \( y \frac{dy}{dx} + 6x^{3}(x^{2} - 3) = 0 \) **Step 1: Differentiate \( y \) with Respect to \( x \).** Given: \[ y = x^{2} \sqrt{9 - 2x^{2}} \] Let’s compute \( \frac{dy}{dx} \) using the product rule: \[ \frac{dy}{dx} = \frac{d}{dx}\left( x^{2} \right) \cdot \sqrt{9 - 2x^{2}} + x^{2} \cdot \frac{d}{dx}\left( \sqrt{9 - 2x^{2}} \right) \] Compute each derivative: \[ \frac{d}{dx}\left( x^{2} \right) = 2x \] \[ \frac{d}{dx}\left( \sqrt{9 - 2x^{2}} \right) = \frac{1}{2} (9 - 2x^{2})^{-1/2} \cdot (-4x) = -\frac{2x}{\sqrt{9 - 2x^{2}}} \] Substitute back: \[ \frac{dy}{dx} = 2x \sqrt{9 - 2x^{2}} + x^{2} \left( -\frac{2x}{\sqrt{9 - 2x^{2}}} \right) \\ = 2x \sqrt{9 - 2x^{2}} - \frac{2x^{3}}{\sqrt{9 - 2x^{2}}} \] **Step 2: Compute \( y \frac{dy}{dx} \).** Multiply \( y \) by \( \frac{dy}{dx} \): \[ y \frac{dy}{dx} = x^{2} \sqrt{9 - 2x^{2}} \left( 2x \sqrt{9 - 2x^{2}} - \frac{2x^{3}}{\sqrt{9 - 2x^{2}}} \right) \] Simplify each term: \[ = x^{2} \left( 2x (9 - 2x^{2}) \right) - x^{2} \left( \frac{2x^{3}}{1} \right) \\ = 2x^{3} (9 - 2x^{2}) - 2x^{5} \\ = 18x^{3} - 4x^{5} - 2x^{5} \\ = 18x^{3} - 6x^{5} \\ = 6x^{3} (3 - x^{2}) \\ = -6x^{3} (x^{2} - 3) \] **Step 3: Verify the Given Equation.** We have: \[ y \frac{dy}{dx} = -6x^{3} (x^{2} - 3) \] Adding \( 6x^{3}(x^{2} - 3) \) to both sides: \[ y \frac{dy}{dx} + 6x^{3} (x^{2} - 3) = 0 \] **Conclusion:** \[ y \frac{dy}{dx} + 6x^{3}(x^{2} - 3) = 0 \quad \text{is verified.} \] --- ### Final Answer: **(i)** All real numbers \( x \) with absolute value at most \( \dfrac{3}{\sqrt{2}} \); that is, \( |x| \le \dfrac{3}{\sqrt{2}} \). **(ii)** After expanding, \( y\, dy/dx + 6x^{3}(x^{2} -3) = 0 \) holds.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To determine the range of values for \( x \) that make \( y = x^{2} \sqrt{9 - 2x^{2}} \) valid, we need the expression under the square root to be non-negative. Therefore, we have the condition: \[ 9 - 2x^{2} \geq 0 \] Solving this gives: \[ 2x^{2} \leq 9 \\ x^{2} \leq \frac{9}{2} \\ -\sqrt{\frac{9}{2}} \leq x \leq \sqrt{\frac{9}{2}} \] Hence, the valid range of \( x \) is: \[ -\frac{3}{\sqrt{2}} \leq x \leq \frac{3}{\sqrt{2}}. \] For the second part, we need to differentiate \( y \) with respect to \( x \): \[ y = x^{2}(9 - 2x^{2})^{1/2}. \] Using the product rule and chain rule, we get: \[ \frac{dy}{dx} = 2x(9 - 2x^{2})^{1/2} + x^{2} \cdot \frac{1}{2}(9 - 2x^{2})^{-1/2}(-4x) \\ = 2x(9 - 2x^{2})^{1/2} - \frac{2x^{3}}{\sqrt{9 - 2x^{2}}}. \] Now we simplify: \[ \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2x\sqrt{9 - 2x^{2}}(9 - 2x^{2}) - 2x^{3}}{\sqrt{9 - 2x^{2}}} = \frac{2x(9 - 2x^{2}) - 2x^{3}}{\sqrt{9 - 2x^{2}}} \\ = \frac{2x(9 - 4x^{2})}{\sqrt{9 - 2x^{2}}}. \] Now multiply \( y \) by \( \frac{\mathrm{d}y}{\mathrm{d}x} \): \[ y \frac{dy}{dx} = x^{2}\sqrt{9 - 2x^{2}} \cdot \frac{2x(9 - 4x^{2})}{\sqrt{9 - 2x^{2}}} \\ = 2x^3(9 - 4x^{2}). \] Next, we need to show: \[ 2x^3(9 - 4x^{2}) + 6x^{3}(x^{2} - 3) = 0. \] This simplifies to: \[ 2x^3(9 - 4x^{2}) + 6x^{3}(x^{2} - 3) = 0 \\ 2x^3(9 - 4x^{2} + 3x^{2} - 18) = 0 \\ 2x^3(-x^{2} + 9) = 0. \] Thus, we arrive at: \[ 2x^3(9 - x^{2}) = 0. \] Thus, \( y \frac{\mathrm{d}y}{\mathrm{d}x} + 6x^{3}(x^{2} - 3) = 0 \) is confirmed.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad