Pregunta
upstudy study bank question image url

Sketch the graph of I and celermine where \( f \) is nondifforentable. \[ f(x)=\left\{\begin{aligned} -4 x & \text { if } x<1 \\ -4 & \text { if } x \geq 1 \end{aligned}\right. \] Where is the function \( f(x) \) nondifferuitable? Select the correct choice below and, if necessary, fill in the answer box to cnmplelo your choice. A. The funclion \( I(x) \) is nondifferentiable ai \( x= \) \( \square \) because the function is not continuous thero. B. The function \( l(x) \) is differentiable lor all real numbers C. The function \( f(x) \) is nondifferentiable at \( x=\square \) because there is a sharp turn there. D. The function \( f(x) \) is nondifferonliablo ot \( x=\square \) \( \square \) because there is a vertical langent line there.

Ask by Lambert Ramos. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The function \( f(x) \) is nondifferentiable at \( x = 1 \) because there is a sharp turn there.

Solución

Let's analyze the function \( f(x) \): \[ f(x) = \begin{cases} -4x & \text{if } x < 1 \\ -4 & \text{if } x \geq 1 \end{cases} \] ### **Graph of \( f(x) \):** 1. **For \( x < 1 \):** The function is a straight line with a slope of \(-4\), passing through the origin. 2. **For \( x \geq 1 \):** The function is a constant value \(-4\), which is a horizontal line. At \( x = 1 \): - **Left-hand limit:** \( f(1^-) = -4(1) = -4 \) - **Right-hand limit:** \( f(1^+) = -4 \) Since both limits are equal and equal to \( f(1) \), the function is **continuous** at \( x = 1 \). ### **Differentiability:** - **For \( x < 1 \):** The derivative of \( f(x) = -4x \) is \( f'(x) = -4 \). - **For \( x \geq 1 \):** The derivative of \( f(x) = -4 \) is \( f'(x) = 0 \). At \( x = 1 \): - **Left-hand derivative:** \( f'(1^-) = -4 \) - **Right-hand derivative:** \( f'(1^+) = 0 \) Since the left-hand derivative does not equal the right-hand derivative, \( f(x) \) is **not differentiable** at \( x = 1 \). ### **Conclusion:** The function \( f(x) \) has a sharp turn at \( x = 1 \), making it nondifferentiable at that point. **Correct Choice:** **C.** The function \( f(x) \) is nondifferentiable at \( x = 1 \) because there is a sharp turn there.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To analyze the function \( f(x) \), we can look at the two pieces defined in the piecewise function. For \( x < 1 \), the function is represented as a linear equation, \( -4x \), which is differentiable everywhere in that region. However, at \( x = 1 \), the function transitions to a constant value of \( -4 \). This change creates a sharp turn in the graph, making the function nondifferentiable at that point. The correct choice is C. The function \( f(x) \) is nondifferentiable at \( x = 1 \) because there is a sharp turn there. The graph illustrates a clear break in the smoothness typical of differentiable functions due to the abrupt change in the slope of the graph at this value.

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad