Pregunta
upstudy study bank question image url

Use the given function to complete parts a) through e) below. \( f(x)=-3(x-3)^{2}\left(x^{2}-4\right) \) a) Use the Leading Coefficient Test to determine the graph's end behavior The graph of \( f(x) \) rises left and falls night. The graph of \( f(x) \) falls left and falls right. The graph of \( f(x) \) falls left and rises right. b) Find the \( x \)-intercepts. The \( x \)-intercept(s) is/are \( \square \). \( \mathrm{\square} \). x . rises left and rises right. (Type an integer or a decimal. Use a comma to separate answers as needed )

Ask by Nichols Bird. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**a)** The graph of \( f(x) \) falls left and falls right. **b)** The \( x \)-intercepts are: \( -2, \ 2, \ 3 \).

Solución

Sure, let's work through parts **a)** and **b)** for the function: \[ f(x) = -3(x - 3)^2 (x^2 - 4) \] --- ### **a) Leading Coefficient Test: Determine the Graph's End Behavior** The **Leading Coefficient Test** helps us understand how the ends of the graph behave based on the leading term of the polynomial. 1. **Expand the Function to Identify the Leading Term:** \[ f(x) = -3(x - 3)^2 (x^2 - 4) \] First, expand \((x - 3)^2\): \[ (x - 3)^2 = x^2 - 6x + 9 \] Now, multiply this by \((x^2 - 4)\): \[ (x^2 - 6x + 9)(x^2 - 4) = x^4 - 6x^3 + 5x^2 + 24x - 36 \] Finally, multiply by \(-3\): \[ f(x) = -3x^4 + 18x^3 - 15x^2 - 72x + 108 \] The **leading term** is \(-3x^4\). 2. **Apply the Leading Coefficient Test:** - **Degree:** 4 (even) - **Leading Coefficient:** \(-3\) (negative) For polynomials with even degrees: - **Positive Leading Coefficient:** Both ends rise to \(+\infty\). - **Negative Leading Coefficient:** Both ends fall to \(-\infty\). Therefore, since the leading coefficient is negative and the degree is even: **End Behavior:** The graph **falls to the left** and **falls to the right**. --- ### **b) Find the \( x \)-Intercepts** To find the \( x \)-intercepts, set \( f(x) = 0 \) and solve for \( x \): \[ -3(x - 3)^2 (x^2 - 4) = 0 \] 1. **Set Each Factor Equal to Zero:** - \( (x - 3)^2 = 0 \) \(\Rightarrow x = 3\) (Multiplicity 2) - \( x^2 - 4 = 0 \) \(\Rightarrow x^2 = 4\) \(\Rightarrow x = 2 \) or \( x = -2 \) 2. **List the \( x \)-Intercepts:** \[ x = -2, \quad x = 2, \quad x = 3 \] **Note:** \( x = 3 \) is a repeated root, which means the graph **touches** the \( x \)-axis at this point but does not cross it. --- ### **Final Answers:** **a)** The graph of \( f(x) \) **falls left and falls right**. **b)** The \( x \)-intercepts are: \( -2, \ 2, \ 3 \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To understand the end behavior of the function, let's take a quick trip down polynomial lane! The leading term of the function \( f(x) = -3(x-3)^2(x^2-4) \) is determined by expanding it out and looking at the highest degree term. Since we have a negative leading coefficient with an even degree, the graph will fall left and rise right - so the answer is: The graph of \( f(x) \) falls left and rises right! Now, for those elusive \( x \)-intercepts! To find the \( x \)-intercepts, we need to set \( f(x) = 0 \). From the function, this occurs when either \( (x-3)^2 = 0 \) or \( (x^2 - 4) = 0 \). This gives us \( x = 3 \) (with multiplicity 2) and \( x = 2, -2 \). So, the \( x \)-intercepts are: \( 3, 2, -2 \).

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad