Solve the equation. Be sure to check for extraneo \( |2 k+1| \geq 9 \) Interval Notation: typeyour answer...
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To solve the inequality \( |2k + 1| \geq 9 \), we break it into two cases: 1. \( 2k + 1 \geq 9 \): Subtract 1 from both sides: \( 2k \geq 8 \) Dividing by 2 gives: \( k \geq 4 \). 2. \( 2k + 1 \leq -9 \): Subtract 1 from both sides: \( 2k \leq -10 \) Dividing by 2 gives: \( k \leq -5 \). Combining the results, we find the solution in interval notation: \( (-\infty, -5] \cup [4, \infty) \). Now, checking for extraneous solutions, since we only have two boundary cases and both were strict inequalities, there are no extraneous solutions here. Interval Notation: \( (-\infty, -5] \cup [4, \infty) \)