Pregunta
upstudy study bank question image url

Select every sequence that is arithmetic. \( \square 6,12,24,48,96 \ldots \) \( \square 1,-1,-3,-5,-7 \ldots \) \( \square 0.75,1.5,2.25,3,3.75 \ldots \) \( \square 4,6,9,13.5, \ldots \) \( \square 1,1,2,3,5,8,13 \ldots \)

Ask by Huff Frazier. in Japan
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The arithmetic sequences are: - \(1, -1, -3, -5, -7, \ldots\) - \(0.75, 1.5, 2.25, 3, 3.75, \ldots\)

Solución

To determine which of the given sequences are **arithmetic**, let's recall that an **arithmetic sequence** is one where the **difference between consecutive terms is constant**. This constant difference is known as the **common difference**. Let's analyze each sequence: 1. **\( \square \, 6, 12, 24, 48, 96, \ldots \)** - **Differences:** \(12 - 6 = 6\), \(24 - 12 = 12\), \(48 - 24 = 24\), \(96 - 48 = 48\) - **Observation:** The differences are \(6, 12, 24, 48, \ldots\), which are not constant. - **Conclusion:** **Not** an arithmetic sequence. 2. **\( \square \, 1, -1, -3, -5, -7, \ldots \)** - **Differences:** \(-1 - 1 = -2\), \(-3 - (-1) = -2\), \(-5 - (-3) = -2\), \(-7 - (-5) = -2\) - **Observation:** All differences are \(-2\). - **Conclusion:** **Arithmetic** with a common difference of \(-2\). 3. **\( \square \, 0.75, 1.5, 2.25, 3, 3.75, \ldots \)** - **Differences:** \(1.5 - 0.75 = 0.75\), \(2.25 - 1.5 = 0.75\), \(3 - 2.25 = 0.75\), \(3.75 - 3 = 0.75\) - **Observation:** All differences are \(0.75\). - **Conclusion:** **Arithmetic** with a common difference of \(0.75\). 4. **\( \square \, 4, 6, 9, 13.5, \ldots \)** - **Differences:** \(6 - 4 = 2\), \(9 - 6 = 3\), \(13.5 - 9 = 4.5\) - **Observation:** The differences are \(2, 3, 4.5, \ldots\), which are not constant. - **Conclusion:** **Not** an arithmetic sequence. 5. **\( \square \, 1, 1, 2, 3, 5, 8, 13, \ldots \)** - **Differences:** \(1 - 1 = 0\), \(2 - 1 = 1\), \(3 - 2 = 1\), \(5 - 3 = 2\), \(8 - 5 = 3\), \(13 - 8 = 5\) - **Observation:** The differences are \(0, 1, 1, 2, 3, 5, \ldots\), which are not constant. - **Conclusion:** **Not** an arithmetic sequence. ### **Summary** The **arithmetic sequences** among the given options are: - **\( \square \, 1, -1, -3, -5, -7, \ldots \)** - **\( \square \, 0.75, 1.5, 2.25, 3, 3.75, \ldots \)** These sequences have a **constant difference** between consecutive terms, fulfilling the criteria for an arithmetic sequence.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

An arithmetic sequence is one in which the difference between consecutive terms is constant. The second sequence, \( 1,-1,-3,-5,-7 \ldots \), has a common difference of -2, making it an arithmetic sequence! The first sequence, \( 6,12,24,48,96 \ldots \), is not arithmetic as it doubles each time, rather than adding a fixed number. The third sequence, \( 0.75,1.5,2.25,3,3.75 \ldots \), also works! Here, the common difference is 0.75. In summary, the arithmetic sequences are \( 1,-1,-3,-5,-7 \) and \( 0.75,1.5,2.25,3,3.75 \). For clarity, we can also say that the sequence \( 4,6,9,13.5 \ldots \) demonstrates a varying difference, so it doesn't count. Lastly, the sequence \( 1,1,2,3,5,8,13 \ldots \) is the famed Fibonacci sequence, with no common difference whatsoever!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad