Pregunta

Find the area between the curves \( y = x^2 \) and \( y = 4 - x^2 \) from \( x = -2 \) to \( x = 2 \).

Ask by Bowen Brooks. in Malaysia
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The area between the curves \( y = x^2 \) and \( y = 4 - x^2 \) from \( x = -2 \) to \( x = 2 \) is \( \frac{16}{3} \) or approximately \( 5.\dot{3} \).

Solución

To find the area between the curves \( y = x^2 \) and \( y = 4 - x^2 \) from \( x = -2 \) to \( x = 2 \), we need to integrate the difference between the two functions over the given interval. The area between the curves can be calculated using the formula: \[ \text{Area} = \int_{a}^{b} (f(x) - g(x)) \, dx \] In this case, \( f(x) = 4 - x^2 \) and \( g(x) = x^2 \). The interval is from \( x = -2 \) to \( x = 2 \). Therefore, the area between the curves can be calculated as: \[ \text{Area} = \int_{-2}^{2} ((4 - x^2) - x^2) \, dx \] Let's simplify the expression inside the integral: \[ \text{Area} = \int_{-2}^{2} (4 - 2x^2) \, dx \] Now, we can calculate the integral to find the area between the curves. Evaluate the integral by following steps: - step0: Evaluate using formulas and rules: \(\int_{-2}^{2} \left(4-2x^{2}\right) dx\) - step1: Evaluate the integral: \(\int \left(4-2x^{2}\right) dx\) - step2: Use properties of integrals: \(\int 4 dx+\int -2x^{2} dx\) - step3: Evaluate the integral: \(4x+\int -2x^{2} dx\) - step4: Evaluate the integral: \(4x-\frac{2x^{3}}{3}\) - step5: Return the limits: \(\left(4x-\frac{2x^{3}}{3}\right)\bigg |_{-2}^{2}\) - step6: Calculate the value: \(\frac{16}{3}\) The area between the curves \( y = x^2 \) and \( y = 4 - x^2 \) from \( x = -2 \) to \( x = 2 \) is \( \frac{16}{3} \) or \( 5\frac{1}{3} \) or \( 5.\dot{3} \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the area between the curves \( y = x^2 \) and \( y = 4 - x^2 \) from \( x = -2 \) to \( x = 2 \), we first need to identify which curve is on top and which is on the bottom in the given interval. 1. **Identify the curves**: The curve \( y = 4 - x^2 \) is a downward-opening parabola, while \( y = x^2 \) is an upward-opening parabola. 2. **Finding the points of intersection**: To find where the curves intersect, we set them equal to each other: \[ x^2 = 4 - x^2 \] This simplifies to: \[ 2x^2 = 4 \quad \Rightarrow \quad x^2 = 2 \quad \Rightarrow \quad x = \pm \sqrt{2} \] 3. **Determine the area**: To find the area between the curves from \( x = -2 \) to \( x = 2 \), we can integrate the top curve minus the bottom curve. Since \( 4 - x^2 \) is above \( x^2 \) in this interval, the area \( A \) can be written as: \[ A = \int_{-2}^{2} \left[(4 - x^2) - (x^2)\right] \, dx = \int_{-2}^{2} (4 - 2x^2) \, dx \] 4. **Calculating the integral**: \[ A = \int_{-2}^{2} (4 - 2x^2) \, dx \] This can be computed in two separate parts: \[ A = \left[ 4x - \frac{2}{3}x^3 \right]_{-2}^{2} \] Now, evaluate at the bounds: \[ = \left( 4(2) - \frac{2}{3}(2^3) \right) - \left( 4(-2) - \frac{2}{3}(-2)^3 \right) \] \[ = \left( 8 - \frac{16}{3} \right) - \left( -8 + \frac{16}{3} \right) \] \[ = (8 - \frac{16}{3}) + (8 - \frac{16}{3}) = 16 - \frac{32}{3} = \frac{48}{3} - \frac{32}{3} = \frac{16}{3} \] Thus, the total area between the curves \( y = x^2 \) and \( y = 4 - x^2 \) from \( x = -2 \) to \( x = 2 \) is \( \frac{16}{3} \) square units.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad