Pregunta
upstudy study bank question image url

A post stands vertically in horizontal ground such that 80 cm of the post is above ground Find the length of its shadow when the elevation of the sun is \( 40^{\circ} \).

Ask by Mitchell Barber. in Nigeria
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The length of the shadow is approximately 95.4 centimeters.

Solución

To determine the length of the shadow cast by the post, we can use trigonometric relationships involving the elevation angle of the sun. **Given:** - Height of the post above ground, \( h = 80 \) cm - Elevation angle of the sun, \( \theta = 40^\circ \) **Approach:** When the sun casts a shadow, the relationship between the height of the object and the length of its shadow can be described using the tangent of the elevation angle: \[ \tan(\theta) = \frac{\text{opposite}}{\text{adjacent}} = \frac{h}{L} \] Where: - \( \theta \) is the elevation angle, - \( h \) is the height above ground, - \( L \) is the length of the shadow. **Solving for \( L \):** \[ L = \frac{h}{\tan(\theta)} \] **Calculations:** 1. Calculate \( \tan(40^\circ) \): \[ \tan(40^\circ) \approx 0.8391 \] 2. Substitute the known values into the equation: \[ L = \frac{80 \text{ cm}}{0.8391} \approx 95.4 \text{ cm} \] **Conclusion:** The length of the shadow cast by the post is approximately **95.4 centimeters**.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the length of the shadow cast by the post, we can use trigonometry. When the sun is at an elevation of \( 40^{\circ} \), the height of the post above the ground (80 cm) acts as the opposite side of a right triangle, and the length of the shadow will be the adjacent side. Using the tangent function: \[ \tan(40^{\circ}) = \frac{\text{height of the post}}{\text{length of the shadow}} \] Let the length of the shadow be \( x \). Then: \[ \tan(40^{\circ}) = \frac{80}{x} \] Rearranging gives us: \[ x = \frac{80}{\tan(40^{\circ})} \] Using a calculator, \(\tan(40^{\circ}) \approx 0.8391\): \[ x \approx \frac{80}{0.8391} \approx 95.2 \text{ cm} \] So, the length of the shadow is approximately \( 95.2 \) cm. To get the best visual experience, remember this is like a fun game of angles and heights! You simply use the magic of triangles to find out how long the shadow is based on the sun's position. And voilà, you've just applied some geometry to real-life scenarios—like figuring out when to put on sunscreen or when it's time to play in the shade!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad