Pregunta
upstudy study bank question image url

The equation, with a restriction on \( x \), is the terminal side of an angle \( \theta \) in standard position. \( \begin{array}{l}3 x+y=0, x \geq 0 \\ \text { Give the exact values of the six trigonometric functions of } \theta \text {. } \\ \text { Select the correct choice below and, If necessary, fill in the answer box to complete your choice. } \\ \text { A. } \sin \theta=\square \\ \text { (Simplify your answer. Use integers or fractions for any numbers in the expression. Type an exact answer, using radicals as needed. Rationalize all denominators. } \\ \text { B. The function is undefined. }\end{array} . \begin{array}{l}\text { B }\end{array} \) ?

Ask by Greene Moreno. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The trigonometric functions of \( \theta \) are: - \( \sin \theta = -\dfrac{3\sqrt{10}}{10} \) - \( \cos \theta = \dfrac{\sqrt{10}}{10} \) - \( \tan \theta = -3 \) - \( \csc \theta = -\dfrac{\sqrt{10}}{3} \) - \( \sec \theta = \sqrt{10} \) - \( \cot \theta = -\dfrac{1}{3} \) So, the answer is A.

Solución

To determine the exact values of the six trigonometric functions for the angle \( \theta \) whose terminal side is defined by the equation \( 3x + y = 0 \) with \( x \geq 0 \), let's follow these steps: 1. **Find a Point on the Terminal Side:** The equation \( 3x + y = 0 \) can be rewritten as \( y = -3x \). Since \( x \geq 0 \), let's choose \( x = 1 \) for simplicity: \[ y = -3(1) = -3 \] So, a point on the terminal side is \( (1, -3) \). 2. **Calculate the Distance \( r \) from the Origin to the Point:** \[ r = \sqrt{x^2 + y^2} = \sqrt{1^2 + (-3)^2} = \sqrt{1 + 9} = \sqrt{10} \] 3. **Determine the Trigonometric Functions:** - **Sine (\( \sin \theta \)):** \[ \sin \theta = \frac{y}{r} = \frac{-3}{\sqrt{10}} = -\frac{3\sqrt{10}}{10} \] - **Cosine (\( \cos \theta \)):** \[ \cos \theta = \frac{x}{r} = \frac{1}{\sqrt{10}} = \frac{\sqrt{10}}{10} \] - **Tangent (\( \tan \theta \)):** \[ \tan \theta = \frac{y}{x} = \frac{-3}{1} = -3 \] - **Cosecant (\( \csc \theta \)):** \[ \csc \theta = \frac{1}{\sin \theta} = \frac{1}{-\frac{3\sqrt{10}}{10}} = -\frac{\sqrt{10}}{3} \] - **Secant (\( \sec \theta \)):** \[ \sec \theta = \frac{1}{\cos \theta} = \frac{1}{\frac{\sqrt{10}}{10}} = \sqrt{10} \] - **Cotangent (\( \cot \theta \)):** \[ \cot \theta = \frac{1}{\tan \theta} = \frac{1}{-3} = -\frac{1}{3} \] 4. **Summary of the Six Trigonometric Functions:** - \( \sin \theta = -\dfrac{3\sqrt{10}}{10} \) - \( \cos \theta = \dfrac{\sqrt{10}}{10} \) - \( \tan \theta = -3 \) - \( \csc \theta = -\dfrac{\sqrt{10}}{3} \) - \( \sec \theta = \sqrt{10} \) - \( \cot \theta = -\dfrac{1}{3} \) **Therefore, the correct choice is A, with the trigonometric functions as calculated above.**

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the exact values of the six trigonometric functions of the angle \( \theta \), we start with the equation \( 3x + y = 0 \). This can be rearranged to \( y = -3x \). Since the restriction is \( x \geq 0 \), we can consider points on the line in the first and fourth quadrants. To find the values of the trigonometric functions, we can take a point on the line. Let's choose \( x = 1 \), then \( y = -3 \). The terminal point is \( (1, -3) \). The radius \( r \) can be found using the distance formula: \( r = \sqrt{x^2 + y^2} = \sqrt{1^2 + (-3)^2} = \sqrt{10} \). Now we can determine the trigonometric functions: - \( \sin \theta = \frac{y}{r} = \frac{-3}{\sqrt{10}} = -\frac{3\sqrt{10}}{10} \) - \( \cos \theta = \frac{x}{r} = \frac{1}{\sqrt{10}} = \frac{\sqrt{10}}{10} \) - \( \tan \theta = \frac{y}{x} = \frac{-3}{1} = -3 \) - \( \csc \theta = \frac{r}{y} = \frac{\sqrt{10}}{-3} = -\frac{\sqrt{10}}{3} \) - \( \sec \theta = \frac{r}{x} = \sqrt{10} \) - \( \cot \theta = \frac{x}{y} = \frac{1}{-3} = -\frac{1}{3} \) Thus, the exact values of \( \sin \theta \) and the other trigonometric functions can be confidently expressed in simplified form, following the instructions for proper formatting and rationalizing the denominators.

preguntas relacionadas

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad