Pregunta
upstudy study bank question image url

Simplify the algebraic expression. \( \frac{x^{2}-2 x y+y^{2}}{\frac{x}{y}-\frac{y}{x}} \) \( \frac{x^{2}-2 x y+y^{2}}{x}=\square \)

Ask by Williams Summers. in the United States
Jan 22,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\[ \frac{(x - y)yx}{x + y} = \square \]

Solución

Simplify the expression by following steps: - step0: : \(x^{2}-2xy+y^{2}\) Expand the expression \( \frac{x}{y}-\frac{y}{x} \) Simplify the expression by following steps: - step0: Subtract the terms: \(\frac{x}{y}-\frac{y}{x}\) - step1: Reduce fractions to a common denominator: \(\frac{x\times x}{yx}-\frac{y\times y}{xy}\) - step2: Rewrite the expression: \(\frac{x\times x}{yx}-\frac{y\times y}{yx}\) - step3: Transform the expression: \(\frac{x\times x-y\times y}{yx}\) - step4: Multiply the terms: \(\frac{x^{2}-y\times y}{yx}\) - step5: Multiply the terms: \(\frac{x^{2}-y^{2}}{yx}\) Expand the expression \( \frac{x^{2}-2xy+y^{2}}{\frac{x^{2}-y^{2}}{yx}} \) Simplify the expression by following steps: - step0: Multiply the terms: \(\frac{x^{2}-2xy+y^{2}}{\frac{x^{2}-y^{2}}{yx}}\) - step1: Multiply by the reciprocal: \(\left(x^{2}-2xy+y^{2}\right)\times \frac{yx}{x^{2}-y^{2}}\) - step2: Rewrite the expression: \(\left(x-y\right)^{2}\times \frac{yx}{\left(x-y\right)\left(x+y\right)}\) - step3: Reduce the fraction: \(\left(x-y\right)\times \frac{yx}{x+y}\) - step4: Multiply the terms: \(\frac{\left(x-y\right)yx}{x+y}\) - step5: Multiply the terms: \(\frac{yx\left(x-y\right)}{x+y}\) - step6: Multiply the terms: \(\frac{yx^{2}-y^{2}x}{x+y}\) To simplify the algebraic expression \[ \frac{x^{2}-2xy+y^{2}}{\frac{x}{y}-\frac{y}{x}}, \] we will follow these steps: 1. **Simplify the numerator**: The numerator is \(x^{2} - 2xy + y^{2}\). This expression can be recognized as a perfect square trinomial, which factors to: \[ (x - y)^{2}. \] 2. **Simplify the denominator**: The denominator is \(\frac{x}{y} - \frac{y}{x}\). To combine these fractions, we find a common denominator: \[ \frac{x^{2} - y^{2}}{yx}. \] 3. **Combine the simplified numerator and denominator**: Now we can rewrite the original expression as: \[ \frac{(x - y)^{2}}{\frac{x^{2} - y^{2}}{yx}}. \] 4. **Simplify the overall expression**: Dividing by a fraction is equivalent to multiplying by its reciprocal: \[ \frac{(x - y)^{2} \cdot yx}{x^{2} - y^{2}}. \] 5. **Recognize that \(x^{2} - y^{2}\) can be factored**: The expression \(x^{2} - y^{2}\) can be factored as \((x - y)(x + y)\). Thus, we have: \[ \frac{(x - y)^{2} \cdot yx}{(x - y)(x + y)}. \] 6. **Cancel common factors**: We can cancel one \((x - y)\) from the numerator and denominator: \[ \frac{(x - y) \cdot yx}{x + y}. \] Thus, the simplified expression is: \[ \frac{(x - y)yx}{x + y}. \] So, the final answer is: \[ \frac{(x - y)yx}{x + y} = \square. \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To simplify the expression \( \frac{x^{2}-2xy+y^{2}}{\frac{x}{y}-\frac{y}{x}} \), let's first simplify the denominator: \[ \frac{x}{y} - \frac{y}{x} = \frac{x^2 - y^2}{xy} \] Now, substituting this back into the expression, we have: \[ \frac{x^2 - 2xy + y^2}{\frac{x^2 - y^2}{xy}} = \frac{(x^2 - 2xy + y^2) \cdot (xy)}{x^2 - y^2} \] Next, notice that \( x^2 - 2xy + y^2 = (x - y)^2 \) and \( x^2 - y^2 = (x - y)(x + y) \). Thus, our expression becomes: \[ \frac{(x - y)^2 \cdot (xy)}{(x - y)(x + y)} = \frac{(x - y) \cdot (xy)}{x + y} \] Now, we can conclude that: \[ \frac{x^2-2xy+y^2}{\frac{x}{y}-\frac{y}{x}} = \frac{(x-y) \cdot xy}{x+y} \] So, the final simplified expression is \( \frac{(x - y) \cdot xy}{x + y} \). Additionally, when \( x = y \), the original expression becomes undefined due to division by zero in the denominator. Always check for such cases to avoid errors!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad