\begin{tabular}{l}2.1 .6 Use \( \cos (\alpha-\beta) \) to derive a formula for \( \sin (\alpha+\beta) \). (Hint: use co-function) in degreec \( (\alpha) \) \\ \hline\end{tabular}
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To derive the formula for \( \sin(\alpha + \beta) \) using \( \cos(\alpha - \beta) \), we start with the co-function identity for sine and cosine, which states that \( \sin(x) = \cos(90^\circ - x) \). We can express \( \sin(\alpha + \beta) \) as follows: 1. We know that \( \cos(\alpha - \beta) = \sin(90^\circ - (\alpha - \beta)) = \sin(90^\circ - \alpha + \beta) \). 2. Rearranging, this gives us \( \cos(\alpha - \beta) = \sin(90^\circ - \alpha + \beta) \). 3. Now let's take the complementary angles: \( 90^\circ - \alpha + \beta = 90^\circ - (\beta - \alpha) \). 4. Therefore, we conclude that \( \sin(\alpha + \beta) = \cos(90^\circ - (\alpha + \beta)) \). However, to directly derive \( \sin(\alpha + \beta) \) without confusion, we can also use the sine addition formula: \[ \sin(\alpha + \beta) = \sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta) \] This gives us the direct relation we’re looking for through geometric interpretations of these trigonometric functions.