Given the function \( f(x)=\int_{0}^{x}\left(t^{4}+8 t^{3}+16 t^{2}\right) d t \) determine all \( x \)-values, if any, for which \( f \) has a point of inflection.
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To determine the points of inflection for the function \( f(x) \), we first need to find its second derivative. 1. **Finding \( f(x) \)**: First, we evaluate the integral: \[ f(x) = \int_{0}^{x} \left(t^{4} + 8t^{3} + 16t^{2}\right) dt. \] Computing this integral: \[ f(x) = \left[ \frac{t^{5}}{5} + \frac{8t^{4}}{4} + \frac{16t^{3}}{3} \right]_{0}^{x} = \frac{x^{5}}{5} + 2x^{4} + \frac{16x^{3}}{3}. \] 2. **Finding \( f'(x) \)**: Next, we differentiate \( f(x) \): \[ f'(x) = \frac{d}{dx}\left(\frac{x^{5}}{5} + 2x^{4} + \frac{16x^{3}}{3}\right) = x^{4} + 8x^{3} + 16x^{2}. \] 3. **Finding \( f''(x) \)**: We differentiate again to find the second derivative: \[ f''(x) = \frac{d}{dx}\left(x^{4} + 8x^{3} + 16x^{2}\right) = 4x^{3} + 24x^{2} + 32x. \] 4. **Setting \( f''(x) = 0 \)**: Now we solve for \( f''(x) = 0 \): \[ 4x^{3} + 24x^{2} + 32x = 0. \] Factoring out \( 4x \): \[ 4x(x^{2} + 6x + 8) = 0. \] This gives us one solution: \[ x = 0. \] For the quadratic \( x^{2} + 6x + 8 = 0 \), we can use the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a} = \frac{-6 \pm \sqrt{36 - 32}}{2} = \frac{-6 \pm 2}{2}. \] Thus: \[ x = -2 \quad \text{or} \quad x = -4. \] 5. **Analyzing Points of Inflection**: Points of inflection occur where \( f''(x) \) changes sign. We found potential inflection points at \( x = 0, -2, \) and \( -4 \). To confirm that these values are points of inflection, we can check the sign of \( f''(x) \) around these points: - For \( x < -4 \), let's choose \( x = -5 \): \[ f''(-5) = 4(-5)^{3} + 24(-5)^{2} + 32(-5) = -500 + 600 - 160 = -60 \quad (\text{negative}) \] - For \( -4 < x < -2 \), choose \( x = -3 \): \[ f''(-3) = 4(-3)^{3} + 24(-3)^{2} + 32(-3) = -108 + 216 - 96 = 12 \quad (\text{positive}) \] - For \( -2 < x < 0 \), choose \( x = -1 \): \[ f''(-1) = 4(-1)^{3} + 24(-1)^{2} + 32(-1) = -4 + 24 - 32 = -12 \quad (\text{negative}) \] - For \( x > 0 \), choose \( x = 1 \): \[ f''(1) = 4(1)^{3} + 24(1)^{2} + 32(1) = 4 + 24 + 32 = 60 \quad (\text{positive}) \] From this analysis, the function \( f(x) \) has points of inflection at \( x = -4 \) and \( x = -2