Pregunta
upstudy study bank question image url

Given the function \( f(x)=\int_{0}^{x}\left(t^{4}+8 t^{3}+16 t^{2}\right) d t \) determine all \( x \)-values, if any, for which \( f \) has a point of inflection.

Ask by Estrada Jimenez. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The function \( f(x) \) has points of inflection at \( x = -4 \), \( x = -2 \), and \( x = 0 \).

Solución

To determine the points of inflection for the function \( f(x) = \int_{0}^{x} \left(t^{4} + 8t^{3} + 16t^{2}\right) dt \), we'll follow these steps: 1. **Find the First Derivative \( f'(x) \):** \[ f'(x) = x^4 + 8x^3 + 16x^2 \] 2. **Find the Second Derivative \( f''(x) \):** \[ f''(x) = \frac{d}{dx}(f'(x)) = 4x^3 + 24x^2 + 32x \] Factorizing: \[ f''(x) = 4x(x^2 + 6x + 8) = 4x(x + 2)(x + 4) \] 3. **Find the Third Derivative \( f'''(x) \):** \[ f'''(x) = \frac{d}{dx}(f''(x)) = 12x^2 + 48x + 32 \] 4. **Determine Potential Inflection Points:** Points of inflection occur where \( f''(x) = 0 \) and the concavity changes (i.e., \( f'''(x) \neq 0 \)). Setting \( f''(x) = 0 \): \[ 4x(x + 2)(x + 4) = 0 \implies x = 0, \, x = -2, \, x = -4 \] 5. **Verify Concavity Change Using \( f'''(x) \):** - **At \( x = -4 \):** \[ f'''(-4) = 12(-4)^2 + 48(-4) + 32 = 192 - 192 + 32 = 32 \neq 0 \] - **At \( x = -2 \):** \[ f'''(-2) = 12(-2)^2 + 48(-2) + 32 = 48 - 96 + 32 = -16 \neq 0 \] - **At \( x = 0 \):** \[ f'''(0) = 32 \neq 0 \] Since \( f'''(x) \neq 0 \) at all these points, we confirm that each is a valid point of inflection. 6. **Check the Sign Change of \( f''(x) \):** - **For \( x < -4 \):** \( f''(x) \) is negative. - **Between \( -4 \) and \( -2 \):** \( f''(x) \) is positive. - **Between \( -2 \) and \( 0 \):** \( f''(x) \) is negative. - **For \( x > 0 \):** \( f''(x) \) is positive. The sign of \( f''(x) \) changes at each of the points \( x = -4 \), \( x = -2 \), and \( x = 0 \), confirming they are points of inflection. **Conclusion:** The function \( f(x) \) has points of inflection at: \[ x = -4, \quad x = -2, \quad \text{and} \quad x = 0 \] **Answer:** All real numbers x equal to –4, –2, and 0 are points of inflection for f.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To determine the points of inflection for the function \( f(x) \), we first need to find its second derivative. 1. **Finding \( f(x) \)**: First, we evaluate the integral: \[ f(x) = \int_{0}^{x} \left(t^{4} + 8t^{3} + 16t^{2}\right) dt. \] Computing this integral: \[ f(x) = \left[ \frac{t^{5}}{5} + \frac{8t^{4}}{4} + \frac{16t^{3}}{3} \right]_{0}^{x} = \frac{x^{5}}{5} + 2x^{4} + \frac{16x^{3}}{3}. \] 2. **Finding \( f'(x) \)**: Next, we differentiate \( f(x) \): \[ f'(x) = \frac{d}{dx}\left(\frac{x^{5}}{5} + 2x^{4} + \frac{16x^{3}}{3}\right) = x^{4} + 8x^{3} + 16x^{2}. \] 3. **Finding \( f''(x) \)**: We differentiate again to find the second derivative: \[ f''(x) = \frac{d}{dx}\left(x^{4} + 8x^{3} + 16x^{2}\right) = 4x^{3} + 24x^{2} + 32x. \] 4. **Setting \( f''(x) = 0 \)**: Now we solve for \( f''(x) = 0 \): \[ 4x^{3} + 24x^{2} + 32x = 0. \] Factoring out \( 4x \): \[ 4x(x^{2} + 6x + 8) = 0. \] This gives us one solution: \[ x = 0. \] For the quadratic \( x^{2} + 6x + 8 = 0 \), we can use the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a} = \frac{-6 \pm \sqrt{36 - 32}}{2} = \frac{-6 \pm 2}{2}. \] Thus: \[ x = -2 \quad \text{or} \quad x = -4. \] 5. **Analyzing Points of Inflection**: Points of inflection occur where \( f''(x) \) changes sign. We found potential inflection points at \( x = 0, -2, \) and \( -4 \). To confirm that these values are points of inflection, we can check the sign of \( f''(x) \) around these points: - For \( x < -4 \), let's choose \( x = -5 \): \[ f''(-5) = 4(-5)^{3} + 24(-5)^{2} + 32(-5) = -500 + 600 - 160 = -60 \quad (\text{negative}) \] - For \( -4 < x < -2 \), choose \( x = -3 \): \[ f''(-3) = 4(-3)^{3} + 24(-3)^{2} + 32(-3) = -108 + 216 - 96 = 12 \quad (\text{positive}) \] - For \( -2 < x < 0 \), choose \( x = -1 \): \[ f''(-1) = 4(-1)^{3} + 24(-1)^{2} + 32(-1) = -4 + 24 - 32 = -12 \quad (\text{negative}) \] - For \( x > 0 \), choose \( x = 1 \): \[ f''(1) = 4(1)^{3} + 24(1)^{2} + 32(1) = 4 + 24 + 32 = 60 \quad (\text{positive}) \] From this analysis, the function \( f(x) \) has points of inflection at \( x = -4 \) and \( x = -2

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad