Pregunta
upstudy study bank question image url

16 A machine is now worth \( \$ 153,800 \) and will be depreciated linearly over a 9 -year period, at which time it will be worth \( \$ 41,930 \) as scrap. (a) Find the rule of depreciation function \( f \). (b) What is the domain of \( f \) ? (c) What will the machine be worth in 7 years? (a) Find the rule of depreciation function \( f \). \( f(x)=\square \) (Do not include the \( \$ \) symbol in your answer.) (b) What is the domain of \( f \) ? \( \square \) (Type your answer in interval notation.) (c) What will the machine be worth in 7 years? \( \$ \square \)

Ask by Thornton Wilson. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**(a)** \( f(x) = 153800 - 12430x \) **(b)** \([0, 9]\) **(c)** \$66790

Solución

Let's solve each part step by step. ### (a) Depreciation Function \( f(x) \) The depreciation is linear, so the function has the form: \[ f(x) = \text{Initial Value} - (\text{Depreciation Rate} \times x) \] **Given:** - Initial Value = \$153,800 - Value after 9 years = \$41,930 **Calculate Depreciation Rate:** \[ \text{Depreciation Amount} = 153,800 - 41,930 = 111,870 \] \[ \text{Depreciation Rate per year} = \frac{111,870}{9} = 12,430 \] **Depreciation Function:** \[ f(x) = 153800 - 12430x \] ### (b) Domain of \( f \) The machine is being depreciated over a period of 9 years, starting from year 0. **Domain:** \[ [0, 9] \] ### (c) Value After 7 Years Use the depreciation function to find the value after 7 years. \[ f(7) = 153800 - 12430 \times 7 \] \[ f(7) = 153800 - 87,010 = 66,790 \] **Value after 7 years:** \$ 66,790 --- **Final Answers:** **(a)** \( f(x) = 153800 - 12430x \) **(b)** \([0, 9]\) **(c)** \$66790

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To solve the problem, let's start with the depreciation function. (a) The initial value of the machine is \( \$ 153,800 \) and its value at the end of 9 years will be \( \$ 41,930 \). The total depreciation over 9 years is: \[ 153,800 - 41,930 = 111,870 \] The yearly depreciation rate is: \[ \frac{111,870}{9} = 12,430 \] The rule of depreciation function \( f(x) \) can be defined as: \[ f(x) = 153,800 - 12,430x \] where \( x \) is the number of years since purchase. (b) The domain of \( f \) is defined over the time period of depreciation, which is from when the machine is first purchased (\( x = 0 \)) until the end of the 9 years (\( x = 9 \)). Therefore, the domain in interval notation is: \[ [0, 9] \] (c) To find out what the machine will be worth in 7 years, substitute \( x = 7 \) into the depreciation function: \[ f(7) = 153,800 - 12,430 \cdot 7 = 153,800 - 87,010 = 65,790 \] Thus, in 7 years, the machine will be worth \( \$ 65,790 \). To summarize your requested answers: (a) \( f(x) = 153800 - 12430x \) (b) \( [0, 9] \) (c) \( \$ 65,790 \) And remember, machines might depreciate, but your math skills sure won't when you keep practicing!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad