Pregunta
upstudy study bank question image url

Evaluating an exponential function that models a real-world situation If the rate of inflation is \( 2.5 \% \) per year, the future price \( p(t) \) (in dollars) of a certain item can be modeled by the following exponential function, where \( t \) is number of years from today. Find the price of the item 4 years from today and 8 years from today. Round your answers to the nearest dollar as necessary. Price 4 years from today: \( \$ \square \) Price 8 years from today: \( \$ \square \)

Ask by Lang Herrera. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

To find the future prices: - **4 years from today**: Multiply the current price by 1.104. - **8 years from today**: Multiply the current price by 1.218. For example, if the current price is \$200: - 4 years: \$221 - 8 years: \$244

Solución

To evaluate the future price of an item based on an annual inflation rate, you'll use the exponential growth formula: \[ p(t) = p_0 \times (1 + r)^t \] Where: - \( p(t) \) = future price after \( t \) years - \( p_0 \) = current price of the item - \( r \) = annual inflation rate (expressed as a decimal) - \( t \) = number of years from today Given: - **Annual Inflation Rate, \( r \)**: \( 2.5\% \) or \( 0.025 \) in decimal form **Formula Specific to This Problem:** \[ p(t) = p_0 \times (1.025)^t \] ### Step-by-Step Calculation 1. **Identify the Current Price (\( p_0 \))**: *Note*: The current price (\( p_0 \)) of the item is essential to perform numerical calculations. Since it's not provided in your question, we'll proceed with the formula. If you have the current price, you can substitute it directly into the formula. 2. **Calculate Price After 4 Years (\( t = 4 \))**: \[ p(4) = p_0 \times (1.025)^4 \] \[ p(4) = p_0 \times 1.103812890625 \] \[ p(4) \approx p_0 \times 1.104 \] *This means the price will be approximately 10.4% higher after 4 years.* 3. **Calculate Price After 8 Years (\( t = 8 \))**: \[ p(8) = p_0 \times (1.025)^8 \] \[ p(8) = p_0 \times 1.218402 \] \[ p(8) \approx p_0 \times 1.218 \] *This means the price will be approximately 21.8% higher after 8 years.* ### Example with a Current Price If, for example, the current price of the item is **\$200**, here's how you'd compute the future prices: 1. **After 4 Years**: \[ p(4) = 200 \times 1.104 \approx \$221 \] 2. **After 8 Years**: \[ p(8) = 200 \times 1.218 \approx \$244 \] ### Final Answers Since the current price (\( p_0 \)) isn't provided, the future prices are expressed in terms of \( p_0 \): - **Price 4 years from today**: \( p(4) = p_0 \times 1.104 \) - **Price 8 years from today**: \( p(8) = p_0 \times 1.218 \) **If you provide the current price, I can help you calculate the exact future prices rounded to the nearest dollar.**

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To evaluate the future price of the item using the provided exponential function model, we can use the formula for exponential growth due to inflation: \[ p(t) = p_0 (1 + r)^t \] where \( p_0 \) is the current price of the item, \( r \) is the inflation rate (2.5% or 0.025), and \( t \) is the number of years. Let's assume the current price \( p_0 \) is $100 for simple calculations. Now, to find the price for 4 years (\( t = 4 \)): \[ p(4) = 100 (1 + 0.025)^4 \] \[ p(4) \approx 100 (1.025)^4 \approx 100 \times 1.10381289 \approx 110.38 \] Rounding gives us \( \$110 \). For 8 years (\( t = 8 \)): \[ p(8) = 100 (1 + 0.025)^8 \] \[ p(8) \approx 100 (1.025)^8 \approx 100 \times 1.218402 \approx 121.84 \] Rounding gives us \( \$122 \). Price 4 years from today: \( \$ 110 \) Price 8 years from today: \( \$ 122 \) --- Understanding exponential functions can feel a bit tricky at first, but it's essentially all about growth. Imagine you're planting a tree today that grows a little more each year—even just a percentage can lead to big changes in the future! With our inflation example, seeing prices gradually climb reminds us of the importance of budgeting and saving. In the real world, exponential functions pop up everywhere, not just in finances. Think about populations, antibiotic resistance in bacteria, or even compounding interest in your savings account! Understanding these functions helps us navigate the world more effectively and make informed decisions on everything from investments to health trends.

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad