Pregunta
upstudy study bank question image url

Evaluate the following expressions. Your answer must be an angle \( -\pi / 2 \leq \theta \leq \pi \) in radians, written as a multiple of \( \pi \). Note that \( \pi \) is already provided in the answer so you simply have to fill in the appropriate multiple. E.g. if the answer is \( \pi / 2 \) you should enter \( 1 / 2 \). Do not use decimal answers. Write the answer as a fraction or integer. \( \sin ^{-1}(\sin ((3 \pi / 4))= \) \( \sin ^{-1}(\sin (-\pi / 3))= \) \( \cos ^{-1}(\cos (7 \pi / 6))= \) \( \cos ^{-1}(\cos (3 \pi / 4))= \) Note: You can earn partial credit on this problem.

Ask by Davies Hart. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\[ \begin{aligned} \sin^{-1}(\sin(3\pi/4)) &= \frac{1}{4} \\ \sin^{-1}(\sin(-\pi/3)) &= -\frac{1}{3} \\ \cos^{-1}(\cos(7\pi/6)) &= \frac{5}{6} \\ \cos^{-1}(\cos(3\pi/4)) &= \frac{3}{4} \end{aligned} \]

Solución

Let's evaluate each expression step by step. 1. **\( \sin^{-1}(\sin(3\pi/4)) \)** The range of \( \sin^{-1} \) is \( [-\pi/2, \pi/2] \). Since \( 3\pi/4 \) is outside this range, we find an equivalent angle within the range: \[ \sin(3\pi/4) = \sin(\pi - 3\pi/4) = \sin(\pi/4) \] Therefore: \[ \sin^{-1}(\sin(3\pi/4)) = \pi/4 \quad \Rightarrow \quad \frac{1}{4} \] 2. **\( \sin^{-1}(\sin(-\pi/3)) \)** The angle \( -\pi/3 \) is already within the range \( [-\pi/2, \pi/2] \). Hence: \[ \sin^{-1}(\sin(-\pi/3)) = -\pi/3 \quad \Rightarrow \quad -\frac{1}{3} \] 3. **\( \cos^{-1}(\cos(7\pi/6)) \)** The range of \( \cos^{-1} \) is \( [0, \pi] \). Since \( 7\pi/6 \) is outside this range, we find an equivalent angle within the range: \[ \cos(7\pi/6) = \cos(\pi - \pi/6) = \cos(5\pi/6) \] Therefore: \[ \cos^{-1}(\cos(7\pi/6)) = 5\pi/6 \quad \Rightarrow \quad \frac{5}{6} \] 4. **\( \cos^{-1}(\cos(3\pi/4)) \)** The angle \( 3\pi/4 \) is already within the range \( [0, \pi] \). Hence: \[ \cos^{-1}(\cos(3\pi/4)) = 3\pi/4 \quad \Rightarrow \quad \frac{3}{4} \] **Final Answers:** \[ \begin{aligned} \sin^{-1}(\sin(3\pi/4)) &= \frac{1}{4} \\ \sin^{-1}(\sin(-\pi/3)) &= -\frac{1}{3} \\ \cos^{-1}(\cos(7\pi/6)) &= \frac{5}{6} \\ \cos^{-1}(\cos(3\pi/4)) &= \frac{3}{4} \end{aligned} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

Let's evaluate the expressions one by one: 1. \( \sin^{-1}(\sin(3\pi/4)) = \) - Since \( 3\pi/4 \) is in the range \( -\pi/2 \leq \theta \leq \pi/2 \) for the arcsine function, we need to find a corresponding angle that is within that range. The sine of \( 3\pi/4 \) is the same as the sine of \( \pi/4 \), so the answer is \( \frac{1}{2} \). 2. \( \sin^{-1}(\sin(-\pi/3)) = \) - The angle \( -\pi/3 \) is already in the required range of \( -\pi/2 \leq \theta \leq \pi/2 \). Therefore, the answer is \( -\frac{1}{3} \). 3. \( \cos^{-1}(\cos(7\pi/6)) = \) - The angle \( 7\pi/6 \) can be represented as \( \pi + \pi/6 \). The cosine of \( 7\pi/6 \) is the same as the cosine of \( \pi/6 \), but we need to find the equivalent angle in the range \( 0 \leq \theta \leq \pi \). Thus, the answer is \( \frac{5}{6} \). 4. \( \cos^{-1}(\cos(3\pi/4)) = \) - The angle \( 3\pi/4 \) already lies within \( 0 \leq \theta \leq \pi \), and therefore the answer is \( \frac{3}{4} \). So, summarizing the answers: 1. \( \sin^{-1}(\sin(3\pi/4)) = \frac{1}{2} \) 2. \( \sin^{-1}(\sin(-\pi/3)) = -\frac{1}{3} \) 3. \( \cos^{-1}(\cos(7\pi/6)) = \frac{5}{6} \) 4. \( \cos^{-1}(\cos(3\pi/4)) = \frac{3}{4} \)

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad