Pregunta
upstudy study bank question image url

ERIES - ARITHMETIC SEQ EXAMPLE 2 \( m ; 2 m+2 \) and \( 5 m+3 \) are three consecutive terms of an arithmetic sequence. a) Determine the value of \( m \). b) Determine the sequence.

Ask by West Summers. in South Africa
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**a) Value of \( m \):** \[ m = \frac{1}{2} \] **b) Sequence:** \[ \frac{1}{2}, \quad 3, \quad \frac{11}{2} \] or \[ 0.5, \quad 3, \quad 5.5 \] with a common difference of \( \frac{5}{2} \) (2.5).

Solución

Let's solve the given problem step by step. **Given:** Three consecutive terms of an arithmetic sequence are: - First term: \( m \) - Second term: \( 2m + 2 \) - Third term: \( 5m + 3 \) An **arithmetic sequence** is a sequence of numbers where the difference between consecutive terms is constant. This constant difference is known as the **common difference** (\( d \)). ### a) Determine the value of \( m \) To find the value of \( m \), we'll set up an equation based on the property of arithmetic sequences. 1. **Find the common difference between the first and second terms:** \[ d = (2m + 2) - m = m + 2 \] 2. **Find the common difference between the second and third terms:** \[ d = (5m + 3) - (2m + 2) = 3m + 1 \] 3. **Since the common difference is the same for both pairs of consecutive terms, set them equal:** \[ m + 2 = 3m + 1 \] 4. **Solve for \( m \):** \[ m + 2 = 3m + 1 \\ 2 - 1 = 3m - m \\ 1 = 2m \\ m = \frac{1}{2} \] **Answer to part (a):** \[ m = \frac{1}{2} \] ### b) Determine the sequence Now that we have the value of \( m \), we can find the three consecutive terms of the arithmetic sequence. 1. **First term (\( a_1 \)):** \[ a_1 = m = \frac{1}{2} \] 2. **Second term (\( a_2 \)):** \[ a_2 = 2m + 2 = 2 \left( \frac{1}{2} \right) + 2 = 1 + 2 = 3 \] 3. **Third term (\( a_3 \)):** \[ a_3 = 5m + 3 = 5 \left( \frac{1}{2} \right) + 3 = \frac{5}{2} + 3 = \frac{11}{2} = 5.5 \] 4. **Common difference (\( d \)):** \[ d = m + 2 = \frac{1}{2} + 2 = \frac{5}{2} = 2.5 \] 5. **General form of the sequence:** \[ a_n = a_1 + (n-1)d \] Plugging in the known values: \[ a_n = \frac{1}{2} + (n-1) \times \frac{5}{2} \] **Answer to part (b):** The three consecutive terms of the arithmetic sequence are: \[ \frac{1}{2}, \quad 3, \quad \frac{11}{2} \] or equivalently: \[ 0.5,\quad 3,\quad 5.5 \] The common difference is \( \frac{5}{2} \) (or 2.5), and the general formula for the \( n \)-th term of the sequence is: \[ a_n = \frac{1}{2} + (n-1) \times \frac{5}{2} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the value of \( m \), recall that the difference between consecutive terms in an arithmetic sequence is constant. Here, the first term is \( m \), the second term is \( 2m + 2 \), and the third term is \( 5m + 3 \). Set up the equation for the common difference: \[ (2m + 2) - m = (5m + 3) - (2m + 2) \] This simplifies to: \[ m + 2 = 3m + 1 \] Now, solve for \( m \): \[ m + 2 - 1 = 3m \implies 1 = 2m \implies m = \frac{1}{2} \] Now substitute \( m \) back to find the sequence. First term: \[ m = \frac{1}{2} \] Second term: \[ 2m + 2 = 2 \times \frac{1}{2} + 2 = 1 + 2 = 3 \] Third term: \[ 5m + 3 = 5 \times \frac{1}{2} + 3 = \frac{5}{2} + 3 = \frac{5}{2} + \frac{6}{2} = \frac{11}{2} \] So the sequence is \( \frac{1}{2}, 3, \frac{11}{2} \).

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad