Pregunta
upstudy study bank question image url

A roulette wheel has 34 slots around the rim; 32 slots are numbered from 1 to 32 . Half of these 32 slots are red, and the other half are black. The remaining 2 slots are numbered 0 and 00 and are green. As the roulette wheel is spun in one direction, a small ivory ball is rolled along the rim in the opposite direction. The ball has an equality likely chance of falling into any one of the 34 slots. Find the probabilities of the events listed in parts (a) through (d) below. a. Ball lands in a red slot The probability of the event that the ball lands in a red slot is \( \frac{8}{17} \). (Type an integer or a simplified fraction.) b. Ball lands on 0 or 32 The probability of the event that the ball lands on 0 or 32 is \( \frac{1}{17} \). (Type an integer or a simplified fraction.) c. Ball does not land on a number from 6 through 28 The probability of the event that the ball does not land on a number from 6 through 28 is (Type an integer or a simplified fraction.)

Ask by Wagner Schultz. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The probability that the ball does not land on a number from 6 through 28 is \(\frac{11}{34}\).

Solución

To determine the probability that the ball does **not** land on a number from 6 through 28, let's break down the problem step by step. ### Total Slots: - The roulette wheel has **34 slots**: numbers **1 to 32**, plus **0** and **00**. ### Slots to Exclude: - Numbers **6 through 28**: This includes the numbers 6, 7, 8, ..., 28. - **Count of numbers from 6 to 28**: \( 28 - 6 + 1 = 23 \) numbers. ### Slots Not in 6 through 28: 1. **Numbered slots not in 6-28**: - **1 to 5**: 5 numbers. - **29 to 32**: 4 numbers. - **Total numbered slots not in 6-28**: \( 5 + 4 = 9 \) numbers. 2. **Non-numbered slots**: - **0 and 00**: 2 slots. 3. **Total slots not in 6-28**: - \( 9 \) (numbered) \( + 2 \) (non-numbered) \( = 11 \) slots. ### Probability Calculation: - **Total possible outcomes**: **34** slots. - **Favorable outcomes**: **11** slots. \[ \text{Probability} = \frac{\text{Favorable outcomes}}{\text{Total outcomes}} = \frac{11}{34} \] **Answer:** Problem c Answer: The probability is \(\frac{11}{34}\).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

The probability of the event that the ball does not land on a number from 6 through 28 can be found by considering the numbers outside that range. The numbers from 6 to 28 include 23 individual slots (6, 7, 8, ..., 28). Since there are 34 total slots, the slots that are not included in that range are: 1, 2, 3, 4, 5, 29, 30, 31, 32, 0, and 00. That gives us a total of 11 slots. Thus, the probability is \( \frac{11}{34} \). To summarize: - The ball lands in a red slot: \( \frac{8}{17} \) - The ball lands on 0 or 32: \( \frac{1}{17} \) - The ball does not land on a number from 6 through 28: \( \frac{11}{34} \)

preguntas relacionadas

Latest Probability Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad