Pregunta
upstudy study bank question image url

Exercise 10.1 Question 1: Determine the gradient/slope and the \( y \) - intercept of each of the following straight-line graphs: a. \( f(x)=3 x+1 \) b. \( y=x-4 \) c. \( y=-x+5 \) d. \( h(x)=\frac{1}{2} x \) e. \( y=\frac{3 x}{2}+1 \)

Ask by Kelly Johnston. in South Africa
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

- **a.** Slope: \( 3 \), Y-intercept: \( 1 \) - **b.** Slope: \( 1 \), Y-intercept: \( -4 \) - **c.** Slope: \( -1 \), Y-intercept: \( 5 \) - **d.** Slope: \( \frac{1}{2} \), Y-intercept: \( 0 \) - **e.** Slope: \( \frac{3}{2} \), Y-intercept: \( 1 \)

Solución

Function by following steps: - step0: Find the y-intercept: \(f\left(x\right)=3x+1\) - step1: Set \(x\)=0\(:\) \(f\left(0\right)=3\times 0+1\) - step2: Multiply: \(f\left(0\right)=0+1\) - step3: Remove 0: \(f\left(0\right)=1\) Analyze the y intercept of the function \( h(x)=\frac{1}{2} x \) Function by following steps: - step0: Find the y-intercept: \(h\left(x\right)=\frac{1}{2}x\) - step1: Set \(x\)=0\(:\) \(h\left(0\right)=\frac{1}{2}\times 0\) - step2: Multiply: \(h\left(0\right)=0\) Analyze the y intercept of the function \( y=x-4 \) Function by following steps: - step0: Find the y-intercept: \(y=x-4\) - step1: Set \(x\)=0\(:\) \(y=0-4\) - step2: Remove 0: \(y=-4\) Analyze the y intercept of the function \( y=-x+5 \) Function by following steps: - step0: Find the y-intercept: \(y=-x+5\) - step1: Set \(x\)=0\(:\) \(y=-0+5\) - step2: Evaluate: \(y=0+5\) - step3: Remove 0: \(y=5\) Analyze the slope of the function \( h(x)=\frac{1}{2} x \) Function by following steps: - step0: Find the slope: \(h\left(x\right)=\frac{1}{2}x\) - step1: Write the function as an equation: \(y=\frac{1}{2}x\) - step2: Identify the slope: \(m=\frac{1}{2}\) Analyze the y intercept of the function \( y=\frac{3 x}{2}+1 \) Function by following steps: - step0: Find the y-intercept: \(y=\frac{3x}{2}+1\) - step1: Set \(x\)=0\(:\) \(y=\frac{3\times 0}{2}+1\) - step2: Multiply: \(y=\frac{0}{2}+1\) - step3: Simplify: \(y=1\) Analyze the slope of the function \( y=x-4 \) Function by following steps: - step0: Find the slope: \(y=x-4\) - step1: Identify the slope: \(m=1\) Analyze the slope of the function \( y=-x+5 \) Function by following steps: - step0: Find the slope: \(y=-x+5\) - step1: Identify the slope: \(m=-1\) Analyze the slope of the function \( f(x)=3 x+1 \) Function by following steps: - step0: Find the slope: \(f\left(x\right)=3x+1\) - step1: Write the function as an equation: \(y=3x+1\) - step2: Identify the slope: \(m=3\) Let's determine the gradient (slope) and the \( y \)-intercept for each of the given straight-line graphs step by step. ### a. \( f(x) = 3x + 1 \) - **Slope (m)**: The coefficient of \( x \) is \( 3 \), so \( m = 3 \). - **Y-intercept**: When \( x = 0 \), \( f(0) = 3(0) + 1 = 1 \). Thus, the \( y \)-intercept is \( 1 \). ### b. \( y = x - 4 \) - **Slope (m)**: The coefficient of \( x \) is \( 1 \), so \( m = 1 \). - **Y-intercept**: When \( x = 0 \), \( y = 0 - 4 = -4 \). Thus, the \( y \)-intercept is \( -4 \). ### c. \( y = -x + 5 \) - **Slope (m)**: The coefficient of \( x \) is \( -1 \), so \( m = -1 \). - **Y-intercept**: When \( x = 0 \), \( y = -0 + 5 = 5 \). Thus, the \( y \)-intercept is \( 5 \). ### d. \( h(x) = \frac{1}{2} x \) - **Slope (m)**: The coefficient of \( x \) is \( \frac{1}{2} \), so \( m = \frac{1}{2} \). - **Y-intercept**: When \( x = 0 \), \( h(0) = \frac{1}{2}(0) = 0 \). Thus, the \( y \)-intercept is \( 0 \). ### e. \( y = \frac{3}{2} x + 1 \) - **Slope (m)**: The coefficient of \( x \) is \( \frac{3}{2} \), so \( m = \frac{3}{2} \). - **Y-intercept**: When \( x = 0 \), \( y = \frac{3}{2}(0) + 1 = 1 \). Thus, the \( y \)-intercept is \( 1 \). ### Summary of Results: - **a.** Slope: \( 3 \), Y-intercept: \( 1 \) - **b.** Slope: \( 1 \), Y-intercept: \( -4 \) - **c.** Slope: \( -1 \), Y-intercept: \( 5 \) - **d.** Slope: \( \frac{1}{2} \), Y-intercept: \( 0 \) - **e.** Slope: \( \frac{3}{2} \), Y-intercept: \( 1 \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

For each of the given equations, the gradient (slope) can be identified directly from the coefficient of \( x \), while the \( y \)-intercept can be found as the constant term. a. For \( f(x)=3x+1 \), the gradient is \( 3 \) and the \( y \)-intercept is \( 1 \). b. In \( y=x-4 \), the gradient is \( 1 \) and the \( y \)-intercept is \( -4 \). c. With \( y=-x+5 \), the gradient is \( -1 \) and the \( y \)-intercept is \( 5 \). d. In \( h(x)=\frac{1}{2}x \), the gradient is \( \frac{1}{2} \) and the \( y \)-intercept is \( 0 \). e. Lastly, for \( y=\frac{3}{2}x+1 \), the gradient is \( \frac{3}{2} \) and the \( y \)-intercept is \( 1 \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad