Responder
- **a.** Slope: \( 3 \), Y-intercept: \( 1 \)
- **b.** Slope: \( 1 \), Y-intercept: \( -4 \)
- **c.** Slope: \( -1 \), Y-intercept: \( 5 \)
- **d.** Slope: \( \frac{1}{2} \), Y-intercept: \( 0 \)
- **e.** Slope: \( \frac{3}{2} \), Y-intercept: \( 1 \)
Solución
Function by following steps:
- step0: Find the y-intercept:
\(f\left(x\right)=3x+1\)
- step1: Set \(x\)=0\(:\)
\(f\left(0\right)=3\times 0+1\)
- step2: Multiply:
\(f\left(0\right)=0+1\)
- step3: Remove 0:
\(f\left(0\right)=1\)
Analyze the y intercept of the function \( h(x)=\frac{1}{2} x \)
Function by following steps:
- step0: Find the y-intercept:
\(h\left(x\right)=\frac{1}{2}x\)
- step1: Set \(x\)=0\(:\)
\(h\left(0\right)=\frac{1}{2}\times 0\)
- step2: Multiply:
\(h\left(0\right)=0\)
Analyze the y intercept of the function \( y=x-4 \)
Function by following steps:
- step0: Find the y-intercept:
\(y=x-4\)
- step1: Set \(x\)=0\(:\)
\(y=0-4\)
- step2: Remove 0:
\(y=-4\)
Analyze the y intercept of the function \( y=-x+5 \)
Function by following steps:
- step0: Find the y-intercept:
\(y=-x+5\)
- step1: Set \(x\)=0\(:\)
\(y=-0+5\)
- step2: Evaluate:
\(y=0+5\)
- step3: Remove 0:
\(y=5\)
Analyze the slope of the function \( h(x)=\frac{1}{2} x \)
Function by following steps:
- step0: Find the slope:
\(h\left(x\right)=\frac{1}{2}x\)
- step1: Write the function as an equation:
\(y=\frac{1}{2}x\)
- step2: Identify the slope:
\(m=\frac{1}{2}\)
Analyze the y intercept of the function \( y=\frac{3 x}{2}+1 \)
Function by following steps:
- step0: Find the y-intercept:
\(y=\frac{3x}{2}+1\)
- step1: Set \(x\)=0\(:\)
\(y=\frac{3\times 0}{2}+1\)
- step2: Multiply:
\(y=\frac{0}{2}+1\)
- step3: Simplify:
\(y=1\)
Analyze the slope of the function \( y=x-4 \)
Function by following steps:
- step0: Find the slope:
\(y=x-4\)
- step1: Identify the slope:
\(m=1\)
Analyze the slope of the function \( y=-x+5 \)
Function by following steps:
- step0: Find the slope:
\(y=-x+5\)
- step1: Identify the slope:
\(m=-1\)
Analyze the slope of the function \( f(x)=3 x+1 \)
Function by following steps:
- step0: Find the slope:
\(f\left(x\right)=3x+1\)
- step1: Write the function as an equation:
\(y=3x+1\)
- step2: Identify the slope:
\(m=3\)
Let's determine the gradient (slope) and the \( y \)-intercept for each of the given straight-line graphs step by step.
### a. \( f(x) = 3x + 1 \)
- **Slope (m)**: The coefficient of \( x \) is \( 3 \), so \( m = 3 \).
- **Y-intercept**: When \( x = 0 \), \( f(0) = 3(0) + 1 = 1 \). Thus, the \( y \)-intercept is \( 1 \).
### b. \( y = x - 4 \)
- **Slope (m)**: The coefficient of \( x \) is \( 1 \), so \( m = 1 \).
- **Y-intercept**: When \( x = 0 \), \( y = 0 - 4 = -4 \). Thus, the \( y \)-intercept is \( -4 \).
### c. \( y = -x + 5 \)
- **Slope (m)**: The coefficient of \( x \) is \( -1 \), so \( m = -1 \).
- **Y-intercept**: When \( x = 0 \), \( y = -0 + 5 = 5 \). Thus, the \( y \)-intercept is \( 5 \).
### d. \( h(x) = \frac{1}{2} x \)
- **Slope (m)**: The coefficient of \( x \) is \( \frac{1}{2} \), so \( m = \frac{1}{2} \).
- **Y-intercept**: When \( x = 0 \), \( h(0) = \frac{1}{2}(0) = 0 \). Thus, the \( y \)-intercept is \( 0 \).
### e. \( y = \frac{3}{2} x + 1 \)
- **Slope (m)**: The coefficient of \( x \) is \( \frac{3}{2} \), so \( m = \frac{3}{2} \).
- **Y-intercept**: When \( x = 0 \), \( y = \frac{3}{2}(0) + 1 = 1 \). Thus, the \( y \)-intercept is \( 1 \).
### Summary of Results:
- **a.** Slope: \( 3 \), Y-intercept: \( 1 \)
- **b.** Slope: \( 1 \), Y-intercept: \( -4 \)
- **c.** Slope: \( -1 \), Y-intercept: \( 5 \)
- **d.** Slope: \( \frac{1}{2} \), Y-intercept: \( 0 \)
- **e.** Slope: \( \frac{3}{2} \), Y-intercept: \( 1 \)
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución