Pregunta
upstudy study bank question image url

S of Which function represents a vertical stretch of an exponential function? \( \begin{array}{l}x \quad y=2^{x} \\ y=3 \cdot 2^{x} \\ y=2^{3 x} \\ \text { RETRY }\end{array} \)

Ask by Collins Todd. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The function that represents a vertical stretch of the exponential function \( y = 2^x \) is \( y = 3 \cdot 2^x \).

Solución

A **vertical stretch** of an exponential function occurs when the function is multiplied by a constant factor greater than 1. This scaling affects the \( y \)-values, making the graph "taller" without altering its shape. Let's analyze the given functions: 1. **\( y = 2^x \)** - This is the base exponential function with no stretching or compression. 2. **\( y = 3 \cdot 2^x \)** - Here, the function is multiplied by **3**, which is a constant greater than 1. - **This represents a vertical stretch** of the base exponential function by a factor of 3. 3. **\( y = 2^{3x} \)** - In this case, the exponent is multiplied by **3**, which affects the **horizontal** scaling. - This is a **horizontal compression** by a factor of \( \frac{1}{3} \), not a vertical stretch. 4. **RETRY** - This appears to be an instruction rather than an option and can be disregarded in this context. **Conclusion:** The function that represents a vertical stretch of the exponential function \( y = 2^x \) is: \[ y = 3 \cdot 2^x \] **Graphical Illustration:** - **Base Function (\( y = 2^x \)):** - Passes through (0,1) with a growth rate based on the base 2. - **Vertical Stretch (\( y = 3 \cdot 2^x \)):** - Every \( y \)-value of the base function is multiplied by 3. - Passes through (0,3), making the graph steeper. **Visual Comparison:** | \( x \) | \( y = 2^x \) | \( y = 3 \cdot 2^x \) | |---|---|---| | -1 | 0.5 | 1.5 | | 0 | 1 | 3 | | 1 | 2 | 6 | | 2 | 4 | 12 | | 3 | 8 | 24 | As seen in the table, for each \( x \)-value, the \( y \)-value of \( y = 3 \cdot 2^x \) is three times that of \( y = 2^x \), confirming the vertical stretch. **Final Answer:** \[ y = 3 \cdot 2^x \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

The function \( y = 3 \cdot 2^{x} \) represents a vertical stretch of the exponential function \( y = 2^{x} \). Here, the base of the exponential stays the same, but multiplying by 3 stretches the graph vertically, making it grow faster compared to the original function. If you consider the other options, \( y = 2^{3x} \) compresses the graph horizontally due to the exponent affecting \( x \), while \( y = 2^{x} \) is simply the baseline function. So, remember, when you multiply an exponential function by a constant greater than 1, you're stretching it vertically!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad