Pregunta
upstudy study bank question image url

(10) \( \frac{4}{(2 x+1)^{2}}-\frac{x+1}{2 x+1} \) (12) \( \frac{x-3}{3}-\frac{x-2}{2}+\frac{x+1}{6} \)

Ask by Bob Brooks. in South Africa
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

For expression (10): \[ \frac{3 - 2x^{2} - 3x}{(2x+1)^{2}} \] For expression (12): \[ \frac{1}{6} \]

Solución

Simplify the expression by following steps: - step0: Solution: \(\frac{\left(x-3\right)}{3}-\frac{\left(x-2\right)}{2}+\frac{\left(x+1\right)}{6}\) - step1: Remove the parentheses: \(\frac{x-3}{3}-\frac{x-2}{2}+\frac{x+1}{6}\) - step2: Reduce fractions to a common denominator: \(\frac{\left(x-3\right)\times 2}{3\times 2}-\frac{\left(x-2\right)\times 3}{2\times 3}+\frac{x+1}{6}\) - step3: Multiply the numbers: \(\frac{\left(x-3\right)\times 2}{6}-\frac{\left(x-2\right)\times 3}{2\times 3}+\frac{x+1}{6}\) - step4: Multiply the numbers: \(\frac{\left(x-3\right)\times 2}{6}-\frac{\left(x-2\right)\times 3}{6}+\frac{x+1}{6}\) - step5: Transform the expression: \(\frac{\left(x-3\right)\times 2-\left(x-2\right)\times 3+x+1}{6}\) - step6: Multiply the terms: \(\frac{2x-6-\left(x-2\right)\times 3+x+1}{6}\) - step7: Multiply the terms: \(\frac{2x-6-\left(3x-6\right)+x+1}{6}\) - step8: Calculate: \(\frac{1}{6}\) Calculate or simplify the expression \( 4/(2*x+1)^2 - (x+1)/(2*x+1) \). Simplify the expression by following steps: - step0: Solution: \(\frac{4}{\left(2x+1\right)^{2}}-\frac{\left(x+1\right)}{\left(2x+1\right)}\) - step1: Remove the parentheses: \(\frac{4}{\left(2x+1\right)^{2}}-\frac{x+1}{2x+1}\) - step2: Reduce fractions to a common denominator: \(\frac{4}{\left(2x+1\right)^{2}}-\frac{\left(x+1\right)\left(2x+1\right)}{\left(2x+1\right)\left(2x+1\right)}\) - step3: Multiply: \(\frac{4}{\left(2x+1\right)^{2}}-\frac{\left(x+1\right)\left(2x+1\right)}{\left(2x+1\right)^{2}}\) - step4: Transform the expression: \(\frac{4-\left(x+1\right)\left(2x+1\right)}{\left(2x+1\right)^{2}}\) - step5: Multiply the terms: \(\frac{4-\left(2x^{2}+3x+1\right)}{\left(2x+1\right)^{2}}\) - step6: Subtract the terms: \(\frac{3-2x^{2}-3x}{\left(2x+1\right)^{2}}\) - step7: Calculate: \(\frac{3-2x^{2}-3x}{4x^{2}+4x+1}\) Let's simplify both expressions step by step. ### Expression (10) The expression is: \[ \frac{4}{(2x+1)^{2}} - \frac{x+1}{2x+1} \] 1. **Finding a common denominator**: The common denominator for the two fractions is \((2x+1)^{2}\). 2. **Rewriting the second fraction**: \[ \frac{x+1}{2x+1} = \frac{(x+1)(2x+1)}{(2x+1)^{2}} = \frac{(x+1)(2x+1)}{(2x+1)^{2}} \] 3. **Combining the fractions**: \[ \frac{4 - (x+1)(2x+1)}{(2x+1)^{2}} \] 4. **Expanding the numerator**: \[ (x+1)(2x+1) = 2x^2 + 3x + 1 \] So, the numerator becomes: \[ 4 - (2x^2 + 3x + 1) = 3 - 2x^2 - 3x \] 5. **Final result**: \[ \frac{3 - 2x^{2} - 3x}{(2x+1)^{2}} \] ### Expression (12) The expression is: \[ \frac{x-3}{3} - \frac{x-2}{2} + \frac{x+1}{6} \] 1. **Finding a common denominator**: The common denominator for the three fractions is \(6\). 2. **Rewriting each fraction**: \[ \frac{x-3}{3} = \frac{2(x-3)}{6} = \frac{2x - 6}{6} \] \[ \frac{x-2}{2} = \frac{3(x-2)}{6} = \frac{3x - 6}{6} \] \[ \frac{x+1}{6} = \frac{x+1}{6} \] 3. **Combining the fractions**: \[ \frac{(2x - 6) - (3x - 6) + (x + 1)}{6} \] 4. **Simplifying the numerator**: \[ 2x - 6 - 3x + 6 + x + 1 = 0x + 1 = 1 \] 5. **Final result**: \[ \frac{1}{6} \] ### Summary of Results - For expression (10): \[ \frac{3 - 2x^{2} - 3x}{(2x+1)^{2}} \] - For expression (12): \[ \frac{1}{6} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

Let’s explore the fun and fascinating details around these expressions! For the first expression, simplifying \( \frac{4}{(2 x+1)^{2}}-\frac{x+1}{2 x+1} \) reveals how to combine fractions. You’d want to find a common denominator, which will help you elegantly combine the fractions into one, making it far easier to work with. Just remember, practice makes perfect when working with tricky rational expressions! For the second expression, \( \frac{x-3}{3}-\frac{x-2}{2}+\frac{x+1}{6} \), it's a great opportunity to highlight the importance of getting a common denominator again! In this case, the least common multiple helps you merge all fractions smoothly. A nifty tip? When dealing with fractions, don't forget to simplify after combining them – it can save you time and effort later. Plus, it looks sharper!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad