Responder
For expression (10):
\[
\frac{3 - 2x^{2} - 3x}{(2x+1)^{2}}
\]
For expression (12):
\[
\frac{1}{6}
\]
Solución
Simplify the expression by following steps:
- step0: Solution:
\(\frac{\left(x-3\right)}{3}-\frac{\left(x-2\right)}{2}+\frac{\left(x+1\right)}{6}\)
- step1: Remove the parentheses:
\(\frac{x-3}{3}-\frac{x-2}{2}+\frac{x+1}{6}\)
- step2: Reduce fractions to a common denominator:
\(\frac{\left(x-3\right)\times 2}{3\times 2}-\frac{\left(x-2\right)\times 3}{2\times 3}+\frac{x+1}{6}\)
- step3: Multiply the numbers:
\(\frac{\left(x-3\right)\times 2}{6}-\frac{\left(x-2\right)\times 3}{2\times 3}+\frac{x+1}{6}\)
- step4: Multiply the numbers:
\(\frac{\left(x-3\right)\times 2}{6}-\frac{\left(x-2\right)\times 3}{6}+\frac{x+1}{6}\)
- step5: Transform the expression:
\(\frac{\left(x-3\right)\times 2-\left(x-2\right)\times 3+x+1}{6}\)
- step6: Multiply the terms:
\(\frac{2x-6-\left(x-2\right)\times 3+x+1}{6}\)
- step7: Multiply the terms:
\(\frac{2x-6-\left(3x-6\right)+x+1}{6}\)
- step8: Calculate:
\(\frac{1}{6}\)
Calculate or simplify the expression \( 4/(2*x+1)^2 - (x+1)/(2*x+1) \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{4}{\left(2x+1\right)^{2}}-\frac{\left(x+1\right)}{\left(2x+1\right)}\)
- step1: Remove the parentheses:
\(\frac{4}{\left(2x+1\right)^{2}}-\frac{x+1}{2x+1}\)
- step2: Reduce fractions to a common denominator:
\(\frac{4}{\left(2x+1\right)^{2}}-\frac{\left(x+1\right)\left(2x+1\right)}{\left(2x+1\right)\left(2x+1\right)}\)
- step3: Multiply:
\(\frac{4}{\left(2x+1\right)^{2}}-\frac{\left(x+1\right)\left(2x+1\right)}{\left(2x+1\right)^{2}}\)
- step4: Transform the expression:
\(\frac{4-\left(x+1\right)\left(2x+1\right)}{\left(2x+1\right)^{2}}\)
- step5: Multiply the terms:
\(\frac{4-\left(2x^{2}+3x+1\right)}{\left(2x+1\right)^{2}}\)
- step6: Subtract the terms:
\(\frac{3-2x^{2}-3x}{\left(2x+1\right)^{2}}\)
- step7: Calculate:
\(\frac{3-2x^{2}-3x}{4x^{2}+4x+1}\)
Let's simplify both expressions step by step.
### Expression (10)
The expression is:
\[
\frac{4}{(2x+1)^{2}} - \frac{x+1}{2x+1}
\]
1. **Finding a common denominator**: The common denominator for the two fractions is \((2x+1)^{2}\).
2. **Rewriting the second fraction**:
\[
\frac{x+1}{2x+1} = \frac{(x+1)(2x+1)}{(2x+1)^{2}} = \frac{(x+1)(2x+1)}{(2x+1)^{2}}
\]
3. **Combining the fractions**:
\[
\frac{4 - (x+1)(2x+1)}{(2x+1)^{2}}
\]
4. **Expanding the numerator**:
\[
(x+1)(2x+1) = 2x^2 + 3x + 1
\]
So, the numerator becomes:
\[
4 - (2x^2 + 3x + 1) = 3 - 2x^2 - 3x
\]
5. **Final result**:
\[
\frac{3 - 2x^{2} - 3x}{(2x+1)^{2}}
\]
### Expression (12)
The expression is:
\[
\frac{x-3}{3} - \frac{x-2}{2} + \frac{x+1}{6}
\]
1. **Finding a common denominator**: The common denominator for the three fractions is \(6\).
2. **Rewriting each fraction**:
\[
\frac{x-3}{3} = \frac{2(x-3)}{6} = \frac{2x - 6}{6}
\]
\[
\frac{x-2}{2} = \frac{3(x-2)}{6} = \frac{3x - 6}{6}
\]
\[
\frac{x+1}{6} = \frac{x+1}{6}
\]
3. **Combining the fractions**:
\[
\frac{(2x - 6) - (3x - 6) + (x + 1)}{6}
\]
4. **Simplifying the numerator**:
\[
2x - 6 - 3x + 6 + x + 1 = 0x + 1 = 1
\]
5. **Final result**:
\[
\frac{1}{6}
\]
### Summary of Results
- For expression (10):
\[
\frac{3 - 2x^{2} - 3x}{(2x+1)^{2}}
\]
- For expression (12):
\[
\frac{1}{6}
\]
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución