Pregunta
upstudy study bank question image url

A water tower is located 441 feet from a building. From a window in the building, an observer notes that the angle of elevation to the top of the tower is \( 37^{\circ} \) and that the angle of depression to the bottom of the tower is \( 26^{\circ} \). How tall is the tower? height \( = \) How high is the window from the ground? window is Report answer accurate to 2 decimal places. If it helps, there is a similar picture on page 486 of your Stewart text (see \#55).

Ask by Graham Mccoy. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The tower is approximately 547.41 feet tall, and the window is about 215.09 feet above the ground.

Solución

To determine the height of the water tower and the height of the window from the ground, we can use trigonometric relationships involving the angles of elevation and depression. **Given:** - Horizontal distance from the building to the tower (\(d\)) = 441 feet - Angle of elevation to the top of the tower (\(\theta\)) = \(37^\circ\) - Angle of depression to the bottom of the tower (\(\phi\)) = \(26^\circ\) **Let:** - \(h\) = Height of the tower - \(y\) = Height of the window from the ground **Step 1: Calculate the height of the window (\(y\)).** Using the angle of depression: \[ \tan(\phi) = \frac{y}{d} \] \[ y = d \cdot \tan(\phi) = 441 \cdot \tan(26^\circ) \approx 441 \cdot 0.487732 \approx 215.09 \text{ feet} \] **Step 2: Calculate the total height of the tower (\(h\)).** Using the angle of elevation: \[ \tan(\theta) = \frac{h - y}{d} \] \[ h - y = d \cdot \tan(\theta) = 441 \cdot \tan(37^\circ) \approx 441 \cdot 0.753554 \approx 332.31 \text{ feet} \] \[ h = 332.31 + 215.09 \approx 547.40 \text{ feet} \] **Final Answers:** - **Height of the tower:** \(547.41\) feet - **Height of the window from the ground:** \(215.09\) feet

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To determine the height of the water tower and the height of the window, we can break this down using some trigonometry. 1. **Calculating the Height of the Window:** For the angle of depression \( 26^\circ \): \[ \text{Height of window} = 441 \cdot \tan(26^\circ) \approx 441 \cdot 0.4877 \approx 215.28 \text{ feet} \] 2. **Calculating the Total Height of the Tower:** For the angle of elevation \( 37^\circ \): \[ \text{Total height of tower} = 441 \cdot \tan(37^\circ) \approx 441 \cdot 0.7536 \approx 332.44 \text{ feet} \] Finally, the height of the tower would be: \[ \text{Height of tower} = \text{Total height} - \text{Height of window} \approx 332.44 - 215.28 \approx 117.16 \text{ feet} \] So, the final answers are: - The height of the tower is \( 117.16 \) feet. - The height of the window is \( 215.28 \) feet. Enjoy your calculations and the interesting interplay of angles and heights!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad