Pregunta
upstudy study bank question image url

Suppose \( f(x)>0 \) for all \( x \) and \( \int_{0}^{49} f(x) d x=16 \). Let \( R \) be the region in the first quadrant bounded by the coordinates axes, \( y=f\left(x^{2}\right) \), and \( x=7 \). Find the volume of the solid generated by revolving \( R \) around the \( y \)-axis.

Ask by Schultz Estrada. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The volume of the solid is \( 16\pi \).

Solución

To find the volume of the solid generated by revolving region \( R \) around the \( y \)-axis, we can use the method of cylindrical shells. **Given:** - \( f(x) > 0 \) for all \( x \). - \( \int_{0}^{49} f(x) \, dx = 16 \). **Region \( R \) is bounded by:** - The \( y \)-axis (\( x = 0 \)), - The curve \( y = f(x^2) \), - The \( x \)-axis (\( y = 0 \)), - The vertical line \( x = 7 \). **Using the Method of Shells:** The volume \( V \) of the solid of revolution around the \( y \)-axis is given by: \[ V = 2\pi \int_{0}^{7} x \cdot f(x^2) \, dx \] **Substitution:** Let \( u = x^2 \). Then \( du = 2x \, dx \), which implies \( x \, dx = \frac{du}{2} \). **Limits of Integration:** - When \( x = 0 \), \( u = 0 \). - When \( x = 7 \), \( u = 49 \). **Rewriting the Integral:** \[ V = 2\pi \int_{0}^{7} x \cdot f(x^2) \, dx = 2\pi \times \frac{1}{2} \int_{0}^{49} f(u) \, du = 2\pi \times \frac{1}{2} \times 16 = 16\pi \] **Conclusion:** The volume of the solid is \( 16\pi \). **Final Answer:** Its volume is sixteen times π

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the volume of the solid generated by revolving the region \( R \) around the \( y \)-axis, we can use the method of cylindrical shells. The region \( R \) is bounded by the \( y \)-axis, the line \( x=7 \), and the curve \( y=f(x^2) \). The formula for the volume \( V \) of the solid of revolution using cylindrical shells is given by: \[ V = 2\pi \int_{a}^{b} x \cdot h(x) \, dx \] where \( h(x) \) is the height of the shell at position \( x \). In our case, the limits of integration are from \( x=0 \) to \( x=7 \), and the height of each shell is \( h(x) = f(x^2) \). Therefore, we can write the volume \( V \) as follows: \[ V = 2\pi \int_{0}^{7} x f(x^2) \, dx \] Next, we perform the substitution \( u = x^2 \), which gives \( du = 2x \, dx \) or \( dx = \frac{du}{2\sqrt{u}} \). When \( x=0 \), \( u=0 \), and when \( x=7 \), \( u=49 \). Therefore, we can change the limits of integration accordingly: \[ V = 2\pi \int_{0}^{49} x f(x^2) \, dx = 2\pi \int_{0}^{49} \sqrt{u} f(u) \cdot \frac{du}{2\sqrt{u}} \] The \( \sqrt{u} \) cancels out: \[ V = \pi \int_{0}^{49} f(u) \, du \] We know from the problem statement that: \[ \int_{0}^{49} f(x) \, dx = 16 \] Thus, substituting this result in the expression for volume, we have: \[ V = \pi \cdot 16 = 16\pi \] Therefore, the volume of the solid generated by revolving the region \( R \) around the \( y \)-axis is \[ \boxed{16\pi}. \]

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad