Pregunta
upstudy study bank question image url

1)) There is a raffle with 250 tickets. One ticket will win a \( \$ 160 \) prize, one ticket will win \( \$ 30 \) prize, and the rest will win nothing. If you have a ticket, what is the expected payoff

Ask by Wheeler Fuentes. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The expected payoff for one raffle ticket is \$0.76.

Solución

To determine the expected payoff for holding one raffle ticket, we'll analyze the possible outcomes and their associated probabilities. ### Given: - **Total tickets:** 250 - **Prizes:** - **\$160** prize: 1 winning ticket - **\$30** prize: 1 winning ticket - **No prize:** 248 tickets ### Steps to Calculate Expected Payoff: 1. **Determine the Probability of Each Outcome:** - **Winning \$160:** \( \frac{1}{250} \) - **Winning \$30:** \( \frac{1}{250} \) - **Winning Nothing:** \( \frac{248}{250} \) 2. **Calculate the Expected Value (E):** The expected value is the sum of each outcome multiplied by its probability. \[ E = \left( \frac{1}{250} \times \$160 \right) + \left( \frac{1}{250} \times \$30 \right) + \left( \frac{248}{250} \times \$0 \right) \] Simplifying: \[ E = \frac{160 + 30}{250} = \frac{190}{250} = \$0.76 \] ### **Conclusion:** The **expected payoff** for holding one raffle ticket is **\$0.76**. This means that, on average, you'd expect to receive 76 cents per ticket in the long run. However, it's essential to remember that this is a statistical average; in reality, each ticket either wins \$160, \$30, or nothing.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the expected payoff, we calculate the probability of winning each prize and multiply by the prize amount. The probability of winning the \( \$160 \) prize is \( \frac{1}{250} \), and the expected value from this prize is \( \frac{1}{250} \times 160 = 0.64 \). For the \( \$30 \) prize, the probability is also \( \frac{1}{250} \), yielding an expected value of \( \frac{1}{250} \times 30 = 0.12 \). The probability of winning nothing (248 out of 250 tickets) contributes \( \frac{248}{250} \times 0 = 0 \). Adding these together, the expected payoff is \( 0.64 + 0.12 + 0 = 0.76 \). So, if you buy a ticket, your expected payoff is \( \$0.76 \).

preguntas relacionadas

Latest Probability Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad