Pregunta
upstudy study bank question image url

A student measures the angle of elevation of burw from two different points from point \( P \) and \( D_{1} \) po peat the angle of elevation of the top of the bunsectively of the distance between \( P \) lo \( \& 3 \) 1545 m , calculate the beight of the bulding

Ask by Gross Smith. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

To find the height of the building, use the formula: \[ h = \frac{1545 \times \tan(\theta) \times \tan(\phi)}{\tan(\theta) + \tan(\phi)} \] Where \( \theta \) and \( \phi \) are the angles of elevation from points \( P \) and \( D_1 \) respectively.

Solución

It appears there might be some typographical errors in your problem statement. However, based on the context, I'll interpret the problem as follows: **Problem Interpretation:** - A student measures the angles of elevation to the top of a building from two different points, \( P \) and \( D_1 \). - The distance between points \( P \) and \( D_1 \) is \( 1545 \) meters. - Let’s assume the angles of elevation from \( P \) and \( D_1 \) are \( \theta \) and \( \phi \) degrees, respectively. - The goal is to calculate the height \( h \) of the building. **Solution:** To find the height of the building, we'll use trigonometric principles involving right triangles formed by the observation points, the base of the building, and the top of the building. 1. **Define the Variables:** - Let \( h \) be the height of the building. - Let \( x \) be the horizontal distance from point \( P \) to the base of the building. - Let \( y \) be the horizontal distance from point \( D_1 \) to the base of the building. - Given that the distance between \( P \) and \( D_1 \) is \( 1545 \) meters, we have: \[ x + y = 1545 \text{ meters} \] 2. **Apply the Tangent Function:** - From point \( P \): \[ \tan(\theta) = \frac{h}{x} \quad \Rightarrow \quad x = \frac{h}{\tan(\theta)} \] - From point \( D_1 \): \[ \tan(\phi) = \frac{h}{y} \quad \Rightarrow \quad y = \frac{h}{\tan(\phi)} \] 3. **Set Up the Equation:** - Since \( x + y = 1545 \) meters: \[ \frac{h}{\tan(\theta)} + \frac{h}{\tan(\phi)} = 1545 \] - Factor out \( h \): \[ h \left( \frac{1}{\tan(\theta)} + \frac{1}{\tan(\phi)} \right) = 1545 \] - Simplify using the identity \( \frac{1}{\tan(\alpha)} = \cot(\alpha) \): \[ h (\cot(\theta) + \cot(\phi)) = 1545 \] - Solve for \( h \): \[ h = \frac{1545}{\cot(\theta) + \cot(\phi)} \] - Alternatively, using the fact that \( \cot(\alpha) = \frac{\tan(\beta)}{\tan(\beta)\tan(\alpha)} \), you can express \( h \) as: \[ h = \frac{1545 \times \tan(\theta) \times \tan(\phi)}{\tan(\theta) + \tan(\phi)} \] **Final Formula:** \[ h = \frac{1545 \cdot \tan(\theta) \cdot \tan(\phi)}{\tan(\theta) + \tan(\phi)} \] **Example Calculation:** Suppose the angles of elevation are: - \( \theta = 30^\circ \) - \( \phi = 45^\circ \) 1. Calculate the tangents: \[ \tan(30^\circ) = \frac{\sqrt{3}}{3} \approx 0.5774 \] \[ \tan(45^\circ) = 1 \] 2. Plug into the formula: \[ h = \frac{1545 \times 0.5774 \times 1}{0.5774 + 1} = \frac{1545 \times 0.5774}{1.5774} \approx \frac{892.8}{1.5774} \approx 566 \text{ meters} \] **Conclusion:** To determine the height of the building, you need the specific angles of elevation from both points \( P \) and \( D_1 \). Once you have those angles, you can apply the formula above to calculate the height. If you can provide the exact angles of elevation, I can help you compute the numerical value of the building's height.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To calculate the height of the building using the angles of elevation measured from two different points, we can employ trigonometric principles, particularly the tangent function. If you denote the angle of elevation from point \( P \) as \( \theta_P \) and from point \( D_1 \) as \( \theta_{D1} \), the height \( h \) of the building can be calculated using formulas \( h = d_P \cdot \tan(\theta_P) \) and \( h = d_{D1} \cdot \tan(\theta_{D1}) \), where \( d_P \) and \( d_{D1} \) are the distances from those respective points to the base of the building. Once you have the height from both angles, you can set the two equations equal to each other to solve for the height \( h \). Make sure to convert angles to radians if necessary when using a calculator to ensure accuracy. Happy calculating! When conducting height calculations using angles of elevation, it's crucial to be precise with your measurements. A common mistake is to confuse the angle from the horizontal versus the vertical. Remember, the base of the triangle formed is horizontal; hence your angle should always be measured from that line to the line of sight toward the top of the building. Also, ensure your calculator is in the correct mode (degrees or radians) depending on how you’re inputting your angles!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad