In right triangle \( \mathrm{ABC}, \mathrm{m} \angle A=90^{\circ}, \sin B=2 x-0.28 \), and \( \cos C=4 x+0.16 \). Solve for \( x \).
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
In a right triangle, the sum of the angles is always 180 degrees. Given that \( \angle A = 90^\circ \), we can deduce that \( \angle B + \angle C = 90^\circ \). This means that \( \sin B = \cos C \). You are given: \[ \sin B = 2x - 0.28 \] \[ \cos C = 4x + 0.16 \] Since \( \sin B = \cos C \), we can set the two expressions equal to each other: \[ 2x - 0.28 = 4x + 0.16 \] To solve for \( x \), first, let's rearrange the equation: \[ 2x - 4x = 0.16 + 0.28 \] \[ -2x = 0.44 \] Now, divide by -2: \[ x = \frac{0.44}{-2} = -0.22 \] So, the solution for \( x \) is: \[ \boxed{-0.22} \]