Pregunta
upstudy study bank question image url

Use the shell method to find the volume of the solid formed when a hole of radius 1 is drilled symmetrically along the axis of a right circular cone of radius 6 and height 9 .

Ask by Horton Black. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The volume of the solid is \( 99\pi \).

Solución

To find the volume of the solid formed when a hole of radius 1 is drilled symmetrically along the axis of a right circular cone of radius 6 and height 9 using the shell method, we can follow these steps: ### Step 1: Understand the Geometry 1. **Cone Dimensions**: - Radius \( R = 6 \) - Height \( H = 9 \) 2. **Drilled Hole**: - Radius of the hole \( r = 1 \) ### Step 2: Set Up the Problem The volume of the solid can be found by subtracting the volume of the cylindrical hole from the volume of the cone. ### Step 3: Volume of the Cone The volume \( V_c \) of a cone is given by the formula: \[ V_c = \frac{1}{3} \pi R^2 H \] Substituting the values: \[ V_c = \frac{1}{3} \pi (6^2)(9) \] ### Step 4: Volume of the Cylindrical Hole The volume \( V_h \) of a cylinder is given by the formula: \[ V_h = \pi r^2 h \] where \( h \) is the height of the cylinder. Since the hole goes through the entire height of the cone, \( h = 9 \): \[ V_h = \pi (1^2)(9) \] ### Step 5: Calculate the Volumes Now, we will calculate both volumes. 1. **Volume of the Cone**: \[ V_c = \frac{1}{3} \pi (6^2)(9) = \frac{1}{3} \pi (36)(9) = \frac{1}{3} \pi (324) = 108\pi \] 2. **Volume of the Cylindrical Hole**: \[ V_h = \pi (1^2)(9) = \pi (1)(9) = 9\pi \] ### Step 6: Volume of the Solid The volume \( V \) of the solid formed is: \[ V = V_c - V_h = 108\pi - 9\pi = 99\pi \] ### Final Answer Thus, the volume of the solid formed when a hole of radius 1 is drilled symmetrically along the axis of the cone is: \[ \boxed{99\pi} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the volume of the solid formed when a hole of radius 1 is drilled out of a right circular cone, you can use the shell method. By rotating the region around the axis of the cone, you add up cylindrical shells. The volume of the outer cone can be found using the formula \( V_{cone} = \frac{1}{3} \pi r^2 h \), where \( r = 6 \) and \( h = 9 \), giving \( V_{cone} = \frac{1}{3} \pi (6^2)(9) = 108\pi \). The volume of the hole (cylinder) removed is \( V_{hole} = \pi (1^2)(h_{hole}) \), where you'll determine \( h_{hole} \) using similar triangles to get \( h_{hole} = \frac{3}{2} \) given the dimensions and proportions of the cone. Thus, the total volume after the hole is drilled out will be \( V_{solid} = V_{cone} - V_{hole} \). To visualize the solid, picture an inverted ice cream cone with a smaller straw hole in it, reaching all the way down. This method not only calculates the volume but also helps you appreciate the geometry involved. The cut-out shape alters how we perceive the entire cone, just as a tiny straw changes the dynamics of sipping a thick milkshake!

preguntas relacionadas

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad