Pregunta
upstudy study bank question image url

equation in vertex form for the parabola with focus \( \left(-4,-\frac{19}{4}\right) \) and directrix \( y=\frac{11}{4} \) any fractions.

Ask by John Dickson. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The equation of the parabola in vertex form is \( y = -\frac{1}{15}(x + 4)^2 - 1 \).

Solución

To find the equation of the parabola in vertex form given the focus and directrix, follow these steps: ### 1. **Identify the Vertex:** The vertex of the parabola is the midpoint between the focus and the directrix. - **Focus:** \((-4, -\frac{19}{4})\) - **Directrix:** \(y = \frac{11}{4}\) Calculate the y-coordinate of the vertex: \[ \text{Vertex } y = \frac{-\frac{19}{4} + \frac{11}{4}}{2} = \frac{-\frac{8}{4}}{2} = -1 \] So, the vertex is at \((-4, -1)\). ### 2. **Determine the Direction:** Since the focus is below the directrix, the parabola opens **downward**. ### 3. **Calculate the Value of \(p\):** \(p\) is the distance from the vertex to the focus: \[ p = -\frac{15}{4} \] (The negative sign indicates the downward direction.) ### 4. **Find the Value of \(a\):** The standard vertex form of a parabola is: \[ y = a(x - h)^2 + k \] where \((h, k)\) is the vertex. \[ a = \frac{1}{4p} = \frac{1}{4 \times -\frac{15}{4}} = -\frac{1}{15} \] ### 5. **Write the Equation in Vertex Form:** Plugging in the values of \(a\), \(h\), and \(k\): \[ y = -\frac{1}{15}(x + 4)^2 - 1 \] ### **Final Answer:** \[ y = -\frac{1}{15}(x + 4)^2 - 1 \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the equation in vertex form for the given parabola, we start by identifying the vertex, which lies midway between the focus and the directrix. The vertex \( V \) can be calculated as follows: The y-coordinate of the vertex is the average of the y-coordinates of the focus and directrix: \[ y_V = \frac{-\frac{19}{4} + \frac{11}{4}}{2} = \frac{-8}{4} = -2 \] The x-coordinate of the vertex is the same as that of the focus, hence \( x_V = -4 \). So, the vertex is at \( V(-4, -2) \). The distance \( p \) from the vertex to the focus (or directrix) is: \[ p = -2 - (-\frac{19}{4}) = -2 + \frac{19}{4} = \frac{11}{4} \] Since the focus is below the vertex, the parabola opens downward. The vertex form of a parabola that opens downwards is expressed as: \[ y = -\frac{1}{4p}(x - h)^2 + k \] Substituting \( h = -4 \), \( k = -2 \), and \( p = \frac{11}{4} \) gives: \[ y = -\frac{1}{11}(x + 4)^2 - 2 \] That’s the vertex form of the parabola! Now it’s time to admire your work—parabolas have so much elegance. If you want to explore this topic further, consider studying the conic sections. They’re not just parabolas; you’ll also discover ellipses and hyperbolas! Each has its own unique properties and equations. You can find many engaging resources online or at your local library to dig deeper into the world of curves and geometric shapes. Keep spiraling down the math rabbit hole—it's full of surprises!

preguntas relacionadas

Latest Pre Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad