Pregunta
upstudy study bank question image url

The line's slope is \( -\frac{1}{4} \) and it passes through the point \( (10,-9) \)

Ask by Donnelly Christensen. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The equation of the line is \( y = -\frac{1}{4}x - 6.5 \).

Solución

To determine the equation of a line given its slope and a specific point it passes through, you can use the **point-slope form** and then convert it to other forms as needed. Here's a step-by-step guide based on the information provided: - **Slope (m):** \(-\frac{1}{4}\) - **Point (x₁, y₁):** \((10, -9)\) ### 1. Point-Slope Form The **point-slope form** of a line is given by: \[ y - y_1 = m(x - x_1) \] **Plugging in the values:** \[ y - (-9) = -\frac{1}{4}(x - 10) \] \[ y + 9 = -\frac{1}{4}x + \frac{10}{4} \] \[ y + 9 = -\frac{1}{4}x + 2.5 \] ### 2. Slope-Intercept Form To express the equation in **slope-intercept form** (\(y = mx + b\)), solve for \(y\): \[ y = -\frac{1}{4}x + 2.5 - 9 \] \[ y = -\frac{1}{4}x - 6.5 \] Alternatively, using fractions: \[ y = -\frac{1}{4}x - \frac{13}{2} \] ### 3. Standard Form The **standard form** of a line is \(Ax + By = C\), where \(A\), \(B\), and \(C\) are integers, and \(A\) is non-negative. Starting from the slope-intercept form: \[ y = -\frac{1}{4}x - 6.5 \] Multiply every term by 4 to eliminate the fraction: \[ 4y = -x - 26 \] Rearrange to standard form: \[ x + 4y = -26 \] ### Summary of the Equation in Different Forms 1. **Point-Slope Form:** \[ y + 9 = -\frac{1}{4}(x - 10) \] 2. **Slope-Intercept Form:** \[ y = -\frac{1}{4}x - 6.5 \] or \[ y = -\frac{1}{4}x - \frac{13}{2} \] 3. **Standard Form:** \[ x + 4y = -26 \] You can use any of these forms depending on the context or the specific requirements of your problem.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the equation of the line, we use the point-slope form, which is \( y - y_1 = m(x - x_1) \). Here, \( m \) is the slope, \( (x_1, y_1) \) is the given point. Plugging the values in, we have \( y - (-9) = -\frac{1}{4}(x - 10) \). Simplifying this will give us a neat linear equation. Now that you have the equation, a real-world application could be finding the trajectory of a car moving down a hill. If the slope represents a steep decline, you could use that information to predict the speed of the car based on how steeply the hill descends over distance!

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad