Pregunta
a) \( \frac{\left(11^{3}\right)^{6}}{11^{15}} \)
Ask by Weaver Stuart. in the United States
Jan 24,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
\[
\frac{\left(11^{3}\right)^{6}}{11^{15}} = 11^{3} = 1331
\]
Solución
To simplify the expression:
\[
\frac{\left(11^{3}\right)^{6}}{11^{15}}
\]
**Step 1: Apply the Power of a Power Property**
Recall that \((a^{m})^{n} = a^{m \times n}\). Apply this to the numerator:
\[
\left(11^{3}\right)^{6} = 11^{3 \times 6} = 11^{18}
\]
**Step 2: Divide the Powers with the Same Base**
Now, you have:
\[
\frac{11^{18}}{11^{15}}
\]
When dividing powers with the same base, subtract the exponents:
\[
11^{18} \div 11^{15} = 11^{18 - 15} = 11^{3}
\]
**Step 3: Calculate the Final Value**
\[
11^{3} = 11 \times 11 \times 11 = 1331
\]
**Final Answer:**
\[
\frac{\left(11^{3}\right)^{6}}{11^{15}} = 11^{3} = 1331
\]
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Beyond the Answer
Let's simplify the expression step by step. First, apply the power of a power property, which states that \((a^m)^n = a^{m \cdot n}\). Thus, we have: \[ (11^{3})^{6} = 11^{3 \cdot 6} = 11^{18} \] Now, substitute this back into the original expression: \[ \frac{11^{18}}{11^{15}} \] Using the property of exponents that states \(\frac{a^m}{a^n} = a^{m-n}\), we can simplify this further: \[ 11^{18 - 15} = 11^{3} \] So, the final simplified answer is: \[ 11^3 \] If you compute that, \(11^3 = 1331\).
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium