A circle has the equation \( x^{2}+y^{2}=64 \). (a) Find the center (h,k) and radius rof the circle. (b) Graph the circle. (c) Find the intercepts, if any, of the graph. (a) The center of the circle is ( \( 0 . D) \) ). (Type an ordered pair, using integers or decimals.) The radius of the circle is \( \square \). (Type an integer or a decimal.)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
The center of the circle given the equation \( x^{2}+y^{2}=64 \) is at the point (0, 0), which is the origin. The radius of the circle is calculated by taking the square root of 64, giving us a radius of 8. So, the ordered pair for the center is (0, 0) and the radius is 8. When graphing the circle, you'd start at the center (0, 0) and mark points that are 8 units away in all directions—up (0, 8), down (0, -8), left (-8, 0), and right (8, 0). Then, you can sketch the circle by connecting these points smoothly. This will yield a perfect circle that intersects the X-axis at (-8, 0) and (8, 0), and the Y-axis at (0, -8) and (0, 8).