Pregunta
upstudy study bank question image url

Consider an object moving along a line with the given velocity v . Assume t is time measured in seconds and velocities have units of \( \frac{\mathrm{m}}{\mathrm{s}} \) a. Determine when the motion is in the positive direction and when it is in the negative direction. b. Find the displacement over the given interval. c. Find the distance traveled over the given interval. \( v(\mathrm{t})=2 \mathrm{t}^{2}-16 \mathrm{t}+30 ;[0,6] \) a. When is the motion in the positive direction? Select the correct choice and, if necessary, fill in the answer box to complete your choice. A. The motion is in the positive direction for t -values in the interval(s) \( [0,3),(5,6] \). (Use a comma to separate answers as needed. Type your answers in interval notation.) B. The motion is never in the positive direction. When is the motion in the negative direction? Select the correct choice and, if necessary, fill in the answer box to complete your choice. A. The motion is in the negative direction for t -values in the interval(s) \( (3,5) \). (Use a comma to separate answers as needed. Type your answers in interval notation.) B. The motion is never in the negative direction. b. The displacement of the particle is 36 m . c. The total distance traveled by the particle is m .

Ask by Pritchard Frazier. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The total distance traveled by the particle over the interval \([0, 6]\) seconds is \(41\frac{1}{3}\) meters.

Solución

To determine the **total distance traveled** by the particle over the interval \([0, 6]\) seconds, we'll analyze the velocity function and calculate the necessary integrals. ## Given: \[ v(t) = 2t^2 - 16t + 30 \quad \text{m/s} \] \[ \text{Interval: } [0, 6] \, \text{seconds} \] ## Steps to Find Total Distance Traveled: 1. **Determine When the Velocity is Zero:** To find when the particle changes direction, set \( v(t) = 0 \): \[ 2t^2 - 16t + 30 = 0 \\ t^2 - 8t + 15 = 0 \quad (\text{Divided by } 2) \] Solving the quadratic equation: \[ t = \frac{8 \pm \sqrt{64 - 60}}{2} = \frac{8 \pm 2}{2} \\ t = 5 \, \text{seconds} \quad \text{and} \quad t = 3 \, \text{seconds} \] Thus, the velocity changes sign at \( t = 3 \) seconds and \( t = 5 \) seconds. 2. **Determine Intervals of Positive and Negative Velocity:** - **Positive Velocity:** \( [0, 3) \) and \( (5, 6] \) seconds - **Negative Velocity:** \( (3, 5) \) seconds *(This aligns with your selections in part (a))* 3. **Calculate Displacement in Each Interval:** The displacement is the integral of velocity over time. However, for total **distance**, we take the absolute value of displacement in each interval. - **From \( t = 0 \) to \( t = 3 \):** \[ \int_{0}^{3} v(t) \, dt = \int_{0}^{3} (2t^2 - 16t + 30) \, dt = 36 \, \text{meters} \] - **From \( t = 3 \) to \( t = 5 \):** \[ \int_{3}^{5} v(t) \, dt = -\frac{8}{3} \, \text{meters} \quad (\text{Negative, so distance is } \frac{8}{3} \, \text{meters}) \] - **From \( t = 5 \) to \( t = 6 \):** \[ \int_{5}^{6} v(t) \, dt = \frac{8}{3} \, \text{meters} \] 4. **Sum the Absolute Displacements:** \[ \text{Total Distance} = 36 + \frac{8}{3} + \frac{8}{3} = 36 + \frac{16}{3} = \frac{124}{3} \, \text{meters} \] \[ \frac{124}{3} \, \text{meters} = 41\frac{1}{3} \, \text{meters} \] ## **Answer to Part (c):** The total distance traveled by the particle over the interval \([0, 6]\) seconds is **\(41\frac{1}{3}\) meters**.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To determine when the motion is in the positive or negative direction, we first need to analyze the velocity function \( v(t) = 2t^2 - 16t + 30 \). To find the intervals of positive and negative motion, we set \( v(t) = 0 \) to find critical points. Solving \( 2t^2 - 16t + 30 = 0 \) using the quadratic formula: \[ t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{16 \pm \sqrt{(-16)^2 - 4 \cdot 2 \cdot 30}}{2 \cdot 2} = \frac{16 \pm \sqrt{256 - 240}}{4} = \frac{16 \pm 4}{4} \] This gives us the critical points \( t = 5 \) and \( t = 3 \). Evaluating the sign of \( v(t) \) between the critical points: 1. For \( t \in [0, 3) \), pick \( t = 2 \): \( v(2) = 2(2)^2 - 16(2) + 30 = 8 - 32 + 30 = 6 \) (positive). 2. For \( t \in (3, 5) \), pick \( t = 4 \): \( v(4) = 2(4)^2 - 16(4) + 30 = 32 - 64 + 30 = -2 \) (negative). 3. For \( t \in (5, 6] \), pick \( t = 5.5 \): \( v(5.5) = 2(5.5)^2 - 16(5.5) + 30 = 60.5 - 88 + 30 = 2.5 \) (positive). Hence, the motion is in the positive direction for \( t \in [0, 3) \) and \( (5, 6] \) and in the negative direction for \( t \in (3, 5) \). b. To find the displacement over the interval \([0, 6]\), we integrate the velocity function: \[ \text{Displacement} = \int_0^6 v(t) \, dt = \int_0^6 (2t^2 - 16t + 30) \, dt. \] Calculating this integral gives us \( 36 \) meters, as stated. c. To find the total distance traveled, we need to consider the intervals where the velocity changes sign. The particle travels \( [0,3] \) (positive direction), then slows down from \( 3 \) to \( 5 \) (negative direction), and finally back to \( 6\) (positive direction). 1. Distance for \( [0, 3] \): \[ |v| \text{ gives distance }\int_0^3 (2t^2-16t+30) \, dt = 36 \,m. \] 2. Distance for \( [3, 5] \) (consider the absolute value of velocity): \[ \int_3^5 |v(t)| \, dt = \int_3^5 -(2t^2 - 16t + 30) \, dt = 12 \, m. \] 3. Distance for \( [5, 6] \): \[ \int_5^6 (2t^2 - 16t + 30) \, dt = 6 \, m. \] Thus, total distance traveled is \( 36 + 12 + 6 = 54 \, m. \)

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad