Pregunta
upstudy study bank question image url

\[ \text { Relation } 4 \] \[ \{(8, f),(-2, f),(1, f),(-6, f)\} \] Function Not a function

Ask by Ramos Summers. in the United States
Feb 02,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The relation is a function.

Solución

To determine whether the given relation is a **function**, we need to verify that each input (the first element of each ordered pair) is associated with exactly one output (the second element of each ordered pair). **Given Relation:** \[ \{(8, f), (-2, f), (1, f), (-6, f)\} \] **Analysis:** - **Inputs:** 8, -2, 1, -6 - **Outputs:** All inputs are associated with the same output, \( f \). **Criteria for a Function:** - **Uniqueness:** Each input must be associated with exactly one output. - **Multiple outputs for a single input violate the function definition.** In this relation: - Each input has exactly one corresponding output. - Even though multiple inputs share the same output (\( f \)), this does **not** violate the definition of a function. A function can have different inputs mapping to the same output. **Conclusion:** The given relation satisfies the criteria for a function. **Answer:** Function

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

The relation you've provided includes pairs of the form \((x, f)\) where the same first component \(x\) appears with the same second component \(f\). However, if any \(x\) value were to map to more than one \(f\) value, then it wouldn't be considered a function. In the given relation, each \(x\) value is unique, suggesting that it could indeed be a function if all the pairs were to map correctly without any duplication. One common mistake when determining if a relation is a function is overlooking the uniqueness of \(x\) values. It's crucial to check if for every input \(x\), there is exactly one output. An easy way to visualize this is to think about a vending machine: for each button you press (input), you only want one snack (output) to drop down. If pressing one button gives you different snacks, that’s a problem! Always ensure inputs have consistent outputs!

preguntas relacionadas

Latest Pre Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad