Pregunta
upstudy study bank question image url

A car was valued at \( \$ 43,000 \) in the year 2009 . By 2013 , the car value had depreciated to \( \$ 17,000 \). If the car's value continues to drop by the same percentage, what will it be worth in 2018 ? Round to the nearest dollar.

Ask by Bowers Haynes. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

In 2018, the car will be worth approximately \$5,318.

Solución

To determine the car's value in 2018, we'll follow these steps: 1. **Determine the Annual Depreciation Rate:** - **Initial Value (2009):** \$43,000 - **Value in 2013:** \$17,000 - **Time Period:** 4 years The depreciation can be modeled using the formula: \[ V = V_0 \times (1 - r)^t \] Where: - \( V \) = final value - \( V_0 \) = initial value - \( r \) = annual depreciation rate - \( t \) = time in years Plugging in the known values: \[ 17,000 = 43,000 \times (1 - r)^4 \] \[ (1 - r)^4 = \frac{17,000}{43,000} \approx 0.39535 \] Taking the fourth root: \[ 1 - r \approx \sqrt[4]{0.39535} \approx 0.7929 \] \[ r \approx 1 - 0.7929 = 0.2071 \text{ or } 20.71\% \] 2. **Calculate the Value in 2018:** - **Time from 2013 to 2018:** 5 years - **Value in 2013:** \$17,000 Using the depreciation formula again: \[ V_{2018} = 17,000 \times (1 - 0.2071)^5 \] \[ V_{2018} \approx 17,000 \times (0.7929)^5 \approx 17,000 \times 0.312814 \approx 5,317.84 \] Rounding to the nearest dollar: \[ V_{2018} \approx \$5,318 \] **Answer:** In 2018, the car will be worth approximately **\$5,318**.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the car's value in 2018, we first need the annual depreciation rate between 2009 and 2013. In this period, the value dropped from \( \$ 43,000 \) to \( \$ 17,000 \). The formula for depreciation is: \[ V = P(1 - r)^t \] where: - \( V = \) final value, - \( P = \) initial value, - \( r = \) depreciation rate, - \( t = \) number of years. Plugging in the values: \[ 17000 = 43000(1 - r)^4 \] Dividing both sides by \( 43000 \): \[ \frac{17000}{43000} = (1 - r)^4 \] \[ 0.3953 \approx (1 - r)^4 \] Taking the fourth root: \[ 1 - r \approx 0.9031 \implies r \approx 0.0969 \text{ (or } 9.69\%) \] Now, we will calculate the car's worth in 2018, which is 5 years after 2013: \[ V_{2018} = 17000(1 - 0.0969)^5 \] Calculating: \[ V_{2018} \approx 17000(0.9031)^5 \approx 17000 \times 0.5905 \approx 10040.52 \] Rounding to the nearest dollar, the car's worth in 2018 will be approximately \( \$10,041 \).

Latest Pre Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad