Pregunta
upstudy study bank question image url

A radio tower is 200 feet tall. How far is an observer from the base of the tower if the angle of their line of sight hrom the ground to the top of the tower is \( 65^{\circ} \) ? Round to the nearest hundredth. (t point)

Ask by Ayala Reed. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The observer is approximately 93.17 feet from the base of the tower.

Solución

To determine how far the observer is from the base of the 200-foot-tall radio tower with an angle of elevation of \( 65^{\circ} \), we can use trigonometry, specifically the tangent function. **Step-by-Step Solution:** 1. **Understand the Right Triangle:** - **Opposite Side (Height of the Tower):** 200 feet - **Angle of Elevation:** \( 65^{\circ} \) - **Adjacent Side (Distance from Observer to Base):** \( x \) (what we're trying to find) 2. **Use the Tangent Function:** \[ \tan(\theta) = \frac{\text{Opposite}}{\text{Adjacent}} \] Plugging in the known values: \[ \tan(65^{\circ}) = \frac{200}{x} \] 3. **Solve for \( x \):** \[ x = \frac{200}{\tan(65^{\circ})} \] 4. **Calculate \( \tan(65^{\circ}) \):** \[ \tan(65^{\circ}) \approx 2.1445 \] 5. **Compute the Distance:** \[ x \approx \frac{200}{2.1445} \approx 93.17 \text{ feet} \] **Final Answer:** The observer is approximately **93.17 feet** from the base of the tower.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the distance from the observer to the base of the tower, you can use the tangent function in trigonometry. The height of the tower (200 feet) is the opposite side, and the distance from the observer to the base of the tower is the adjacent side. The formula related to tangent is: \[ \tan(\theta) = \frac{\text{opposite}}{\text{adjacent}} \] Plugging in the values: \[ \tan(65^{\circ}) = \frac{200}{d} \] Solving for \(d\): \[ d = \frac{200}{\tan(65^{\circ})} \approx \frac{200}{2.1445} \approx 93.20 \text{ feet} \] So, the observer is approximately 93.20 feet from the base of the tower. Also, it's always good to double-check your calculator settings. Make sure it's in degree mode when you're working with angles expressed in degrees! A common error in problems like this is using radian mode by mistake, leading to incorrect calculations.

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad