Pregunta
Find the inverse function. \( f(x)=x^{2}+22 \) \( \left.f^{-1}(x)=\sqrt[{[?}]\right]{x+\square} \)
Ask by Mcdonald Vaughn. in the United States
Jan 23,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The inverse function is \( f^{-1}(x) = \sqrt{x - 22} \).
Solución
To find the inverse of the function \( f(x) = x^2 + 22 \), follow these steps:
1. **Replace \( f(x) \) with \( y \):**
\[
y = x^2 + 22
\]
2. **Solve for \( x \) in terms of \( y \):**
\[
y - 22 = x^2
\]
\[
x = \pm\sqrt{y - 22}
\]
3. **Define the inverse function:**
Since a function must pass the vertical line test and have only one output for each input, we typically take the positive square root when defining the inverse (assuming the original function \( f(x) \) is restricted to \( x \geq 0 \)).
\[
f^{-1}(x) = \sqrt{x - 22}
\]
So, the inverse function is:
\[
f^{-1}(x) = \sqrt{x - 22}
\]
**Final Answer:**
\( f^{-1}(x) = \sqrt{x\ -\ 22} \)
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Bonus Knowledge
To find the inverse function of \( f(x) = x^2 + 22 \), we start by switching \( f(x) \) and \( x \): 1. Set \( y = x^2 + 22 \). 2. To find the inverse, express \( x \) in terms of \( y \): \[ y - 22 = x^2 \] \[ x = \sqrt{y - 22} \] (considering \( x \geq 0 \) because it's a function of \( x^2 \)). So, the inverse function is \( f^{-1}(x) = \sqrt{x - 22} \). Now filling in the blanks: \[ \left.f^{-1}(x)=\sqrt[{2}]{x-22}\right. \] If you need more expression options, let me know!
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium