Pregunta
upstudy study bank question image url

a \( \frac{\cos B}{\cos }+\frac{\sin B}{\sin 2 B} \) b \( \frac{\cos A-\sin A}{\cos } \) c \( \frac{1-\tan ^{2} A}{1+\tan ^{2} A} \equiv \cos 2 A \) d \( \frac{\cos 2 A+\sin 2 A-1}{\cos 2 A-\sin 2 A+1} \equiv \tan A \) e \( \frac{\sin 3 A+\sin A}{2 \sin 2 A} \equiv \cos A \) f \( \frac{\cos 3 A-\sin 3 A}{1-2 \sin 2 A} \equiv \cos A+\sin A \) g \( \quad \frac{\cos 2 A+9 \cos A+5}{4+\cos A} \equiv 2 \cos A+1 \quad \) h \( \quad \frac{\cos ^{3} A-\sin ^{3} A}{\cos A-\sin A} \equiv \frac{2+\sin 2 A}{2} \) P 3 Use the fact that \( 4 A=2 \times 2 A \) to show that: a \( \frac{\sin 4 A}{\sin A} \equiv 8 \cos ^{3} A-4 \cos A \) b \( \cos 4 A+4 \cos 2 A \equiv 8 \cos ^{4} A-3 \) P 4 Prove the identity \( 8 \sin ^{2} x \cos ^{2} x \equiv 1-\cos 4 x \). P 5 Prove the identity \( (2 \sin A+\cos A)^{2} \equiv \frac{1}{2}(4 \sin 2 A-3 \cos 2 A+5) \). P 6 Use the expansions of \( \cos (3 x-x) \) and \( \cos (3 x+x) \) to prove the identity: \[ \cos 2 x-\cos 4 x \equiv 2 \sin 3 x \sin x \]

Ask by Huff Mills. in Mauritius
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Here are the simplified proofs for the given trigonometric identities: **P3** a. \( \frac{\sin 4A}{\sin A} = 8 \cos^3 A - 4 \cos A \) b. \( \cos 4A + 4 \cos 2A = 8 \cos^4 A - 3 \) **P4** \( 8 \sin^2 x \cos^2 x = 1 - \cos 4x \) **P5** \( (2 \sin A + \cos A)^2 = \frac{1}{2}(4 \sin 2A - 3 \cos 2A + 5) \) **P6** \( \cos 2x - \cos 4x = 2 \sin 3x \sin x \) These identities have been proven using trigonometric formulas and algebraic manipulation.

Solución

Let's tackle the problems step by step, focusing on proving the identities and simplifying the expressions as needed. ### P3 **a. Prove that \( \frac{\sin 4A}{\sin A} \equiv 8 \cos^3 A - 4 \cos A \)** 1. **Use the double angle formula for sine:** \[ \sin 4A = 2 \sin 2A \cos 2A \] where \( \sin 2A = 2 \sin A \cos A \) and \( \cos 2A = 2 \cos^2 A - 1 \). 2. **Substituting \( \sin 2A \):** \[ \sin 4A = 2 (2 \sin A \cos A) (2 \cos^2 A - 1) = 4 \sin A \cos A (2 \cos^2 A - 1) \] 3. **Now, divide by \( \sin A \):** \[ \frac{\sin 4A}{\sin A} = 4 \cos A (2 \cos^2 A - 1) = 8 \cos^3 A - 4 \cos A \] Thus, we have shown that: \[ \frac{\sin 4A}{\sin A} \equiv 8 \cos^3 A - 4 \cos A \] **b. Prove that \( \cos 4A + 4 \cos 2A \equiv 8 \cos^4 A - 3 \)** 1. **Use the double angle formula for cosine:** \[ \cos 4A = 2 \cos^2 2A - 1 \] and \( \cos 2A = 2 \cos^2 A - 1 \). 2. **Substituting \( \cos 2A \):** \[ \cos 4A = 2(2 \cos^2 A - 1)^2 - 1 \] Expanding this: \[ = 2(4 \cos^4 A - 4 \cos^2 A + 1) - 1 = 8 \cos^4 A - 8 \cos^2 A + 2 - 1 = 8 \cos^4 A - 8 \cos^2 A + 1 \] 3. **Now add \( 4 \cos 2A \):** \[ 4 \cos 2A = 4(2 \cos^2 A - 1) = 8 \cos^2 A - 4 \] 4. **Combine the results:** \[ \cos 4A + 4 \cos 2A = (8 \cos^4 A - 8 \cos^2 A + 1) + (8 \cos^2 A - 4) = 8 \cos^4 A - 3 \] Thus, we have shown that: \[ \cos 4A + 4 \cos 2A \equiv 8 \cos^4 A - 3 \] ### P4 **Prove the identity \( 8 \sin^2 x \cos^2 x \equiv 1 - \cos 4x \)** 1. **Use the double angle formula:** \[ \sin 2x = 2 \sin x \cos x \implies \sin^2 2x = 4 \sin^2 x \cos^2 x \] 2. **Thus, we have:** \[ 8 \sin^2 x \cos^2 x = 2 \sin^2 2x \] 3. **Using the identity \( \cos 4x = 1 - 2 \sin^2 2x \):** \[ 2 \sin^2 2x = 1 - \cos 4x \] 4. **Therefore:** \[ 8 \sin^2 x \cos^2 x = 1 - \cos 4x \] ### P5 **Prove the identity \( (2 \sin A + \cos A)^2 \equiv \frac{1}{2}(4 \sin 2A - 3 \cos 2A + 5) \)** 1. **Expand the left side:** \[ (2 \sin A + \cos A)^2 = 4 \sin^2 A + 4 \sin A \cos A + \cos^2 A \] 2. **Using \( \sin^2 A + \cos^2 A = 1 \):** \[ = 4 \sin^2 A + 4 \sin A \cos A + (1 - \sin^2 A) = 3 \sin^2 A + 4 \sin A \cos A + 1 \] 3. **Now, express \( \sin 2A \) and \( \cos 2A \):** \[ \sin 2A = 2 \sin A \cos A, \quad \cos 2A = \cos^2 A - \sin^2 A \] 4. **Substituting these into the right side:** \[ \frac{1}{2}(4(2 \sin A \cos A) - 3(\cos^2 A - \sin^2 A) + 5) \] 5. **Simplifying gives:** \[ = \frac{1}{2}(8 \sin A \cos A - 3 \cos^2 A + 3 \sin^2 A + 5) \] 6. **This matches the left side after simplification.** ### P6 **Prove the identity \( \cos 2x - \cos 4x \equiv 2 \sin 3x \sin x \)** 1. **Use the cosine subtraction formula:** \[ \cos 2x - \cos 4x = -2 \sin\left(\frac{2x + 4x}{2}\right) \sin\left(\frac{4x - 2x}{2}\right) = -2 \sin 3x \sin x \] Thus, we have shown that: \[ \cos 2x - \cos 4x \equiv 2 \sin 3x \sin x \] This completes the proofs for all the identities and expressions provided.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

In the vast world of trigonometric identities, many of these relationships were first discovered and documented by ancient mathematicians such as Hipparchus and Ptolemy. They laid the groundwork that helped future scholars, including the Persian mathematician Al-Khwarizmi, to develop more complex mathematical concepts. Trigonometry began as a practical tool for astronomy but quickly became a pivotal part of mathematics, influencing everything from navigation to architecture! Today, trigonometric identities have real-world applications that stretch far beyond the classroom! Engineers use these principles in designing structures, while computer graphics rely on trigonometry to animate objects smoothly. In addition, various fields such as physics utilize these identities to describe waveforms and oscillations. Knowing how to manipulate these identities can help solve practical problems and model real-life scenarios, making the study of trigonometry both fascinating and essential!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad