Simplify. Assume \( q \) is greater than or equal to zero. \( \sqrt{75 q^{3}} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To simplify \( \sqrt{75 q^{3}} \), we start by breaking down the expression inside the square root. Notice that \( 75 = 25 \times 3 \) and \( q^{3} = q^{2} \times q \). So, we rewrite the expression: \[ \sqrt{75 q^{3}} = \sqrt{25 \times 3 \times q^{2} \times q} \] Now, we can separate the square root into parts: \[ = \sqrt{25} \times \sqrt{3} \times \sqrt{q^{2}} \times \sqrt{q} \] Calculating the square roots of the perfect squares: \[ = 5 \times \sqrt{3} \times q \times \sqrt{q} \] Combining those together: \[ = 5q\sqrt{3q} \] Thus, the simplified expression is: \[ 5q\sqrt{3q} \]