Pregunta
upstudy study bank question image url

Find an equation of the line that contains the given pair of points. \[ (-6,3),(-4,-3) \] The equation of the line is \( \square \) (Simplify your answer Type your answer in slope-intercept form. Type an inleger or a fraction for tho coelficiont and conslant.)

Ask by Owen Washington. in the United States
Jan 22,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The equation of the line is \( y = -3x - 15 \).

Solución

To find the equation of the line that passes through the points \((-6, 3)\) and \((-4, -3)\), we'll follow these steps: 1. **Calculate the slope (\(m\))**: The slope formula is: \[ m = \frac{y_2 - y_1}{x_2 - x_1} \] Plugging in the given points: \[ m = \frac{-3 - 3}{-4 - (-6)} = \frac{-6}{2} = -3 \] 2. **Find the y-intercept (\(b\))**: Using the slope-intercept form \(y = mx + b\) and one of the points, say \((-6, 3)\): \[ 3 = (-3)(-6) + b \\ 3 = 18 + b \\ b = 3 - 18 \\ b = -15 \] 3. **Write the equation**: Now, substitute the slope and y-intercept into the slope-intercept form: \[ y = -3x - 15 \] **Final Answer:** \[ y = -3x - 15 \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the equation of the line that passes through the points \((-6, 3)\) and \((-4, -3)\), we first need to calculate the slope (m) using the formula: \[ m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-3 - 3}{-4 - (-6)} = \frac{-6}{2} = -3 \] Now, we can use the point-slope form of the line equation, \(y - y_1 = m(x - x_1)\). Let's use point \((-6, 3)\): \[ y - 3 = -3(x + 6) \] Expanding this, we get: \[ y - 3 = -3x - 18 \] Then, adding 3 to both sides yields: \[ y = -3x - 15 \] So the equation of the line in slope-intercept form is: \[ \boxed{y = -3x - 15} \] The equation of the line is \(y = -3x - 15\). To confirm, we can plug in the original points to ensure they satisfy the equation—both should yield true statements when substituted back into the equation. Wouldn't it be exciting if every math problem fit together like this puzzle? Every time you sketch a line, remember that behind every equation lies the story of the points that helped define it. With a little practice, you'll be able to master finding lines with ease!

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad