Pregunta
upstudy study bank question image url

6. \( y=9 x^{2}-24 x \)

Ask by Gibson Simpson. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The quadratic function \( y = 9x^{2} - 24x \) is a parabola opening upwards with its vertex at \( \left( \frac{4}{3}, -16 \right) \). It has x-intercepts at \( (0, 0) \) and \( \left( \frac{8}{3}, 0 \right) \), and a y-intercept at \( (0, 0) \).

Solución

Certainly! Let's analyze the quadratic function you've provided: \[ y = 9x^{2} - 24x \] This is a quadratic equation in the standard form: \[ y = ax^{2} + bx + c \] where: - \( a = 9 \) - \( b = -24 \) - \( c = 0 \) ### 1. **Graphing the Function** The graph of a quadratic function is a **parabola**. Since the coefficient of \( x^{2} \) (which is \( a = 9 \)) is positive, the parabola opens ** upwards**. ### 2. **Finding the Vertex** The **vertex** of the parabola is the highest or lowest point on the graph. For a parabola that opens upwards, the vertex represents the minimum point. The vertex \((h, k)\) can be found using the formula: \[ h = -\frac{b}{2a} \] \[ k = y(h) \] Let's calculate: - \( h = -\frac{-24}{2 \times 9} = \frac{24}{18} = \frac{4}{3} \) - To find \( k \), substitute \( h \) back into the equation: \[ k = 9\left(\frac{4}{3}\right)^{2} - 24\left(\frac{4}{3}\right) = 9 \times \frac{16}{9} - \frac{96}{3} = 16 - 32 = -16 \] **Vertex:** \( \left( \frac{4}{3}, -16 \right) \) ### 3. **Axis of Symmetry** The **axis of symmetry** is a vertical line that passes through the vertex. It has the equation: \[ x = h \] So, \[ x = \frac{4}{3} \] ### 4. **Finding the X-Intercepts (Roots)** To find the **x-intercepts**, set \( y = 0 \) and solve for \( x \): \[ 0 = 9x^{2} - 24x \] Factor out \( 3x \): \[ 0 = 3x(3x - 8) \] Set each factor equal to zero: \[ 3x = 0 \quad \Rightarrow \quad x = 0 \] \[ 3x - 8 = 0 \quad \Rightarrow \quad x = \frac{8}{3} \] **X-Intercepts:** \( (0, 0) \) and \( \left( \frac{8}{3}, 0 \right) \) ### 5. **Y-Intercept** To find the **y-intercept**, set \( x = 0 \): \[ y = 9(0)^{2} - 24(0) = 0 \] **Y-Intercept:** \( (0, 0) \) ### 6. **Completing the Square** To express the quadratic in **vertex form**, which is: \[ y = a(x - h)^{2} + k \] Starting with: \[ y = 9x^{2} - 24x \] Factor out the coefficient of \( x^{2} \): \[ y = 9\left(x^{2} - \frac{24}{9}x\right) = 9\left(x^{2} - \frac{8}{3}x\right) \] Complete the square inside the parentheses: \[ y = 9\left(x^{2} - \frac{8}{3}x + \left(\frac{4}{3}\right)^{2} - \left(\frac{4}{3}\right)^{2}\right) = 9\left(\left(x - \frac{4}{3}\right)^{2} - \frac{16}{9}\right) \] Distribute the 9: \[ y = 9\left(x - \frac{4}{3}\right)^{2} - 16 \] **Vertex Form:** \[ y = 9\left(x - \frac{4}{3}\right)^{2} - 16 \] Which confirms the vertex at \( \left( \frac{4}{3}, -16 \right) \). ### 7. **Summary** - **Vertex:** \( \left( \frac{4}{3}, -16 \right) \) - **Axis of Symmetry:** \( x = \frac{4}{3} \) - **X-Intercepts:** \( (0, 0) \) and \( \left( \frac{8}{3}, 0 \right) \) - **Y-Intercept:** \( (0, 0) \) - **Direction:** Parabola opens upwards - **Vertex Form:** \( y = 9\left(x - \frac{4}{3}\right)^{2} - 16 \) ### 8. **Graph of the Function** Here's a rough sketch of the graph based on the information above: ``` | 10| | | 0|--------*--------*--------*--------*-------- x | (0,0) (4/3, -16) (8/3,0) -10| | ``` - The parabola passes through the points \( (0,0) \), \( \left( \frac{4}{3}, -16 \right) \), and \( \left( \frac{8}{3}, 0 \right) \). - It opens upwards, with the lowest point at the vertex. If you have a specific question or need further analysis related to this equation, feel free to ask!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

Did you know that the equation \( y=9 x^{2}-24 x \) is a quadratic function representing a parabola? In its standard form, it opens upward because the coefficient of \( x^{2} \) is positive. This means it has a minimum point. By completing the square or using the vertex formula, you can find this minimum point and determine the vertex's location on the graph! If you're looking to graph this function, here's a tip: first, factor it to find the x-intercepts. You can rewrite it as \( y = 9x(x - \frac{8}{3}) \). Setting \( y = 0 \), you'll get the x-intercepts at \( x = 0 \) and \( x = \frac{8}{3} \). Plotting these points along with the vertex will help you create a more accurate graph and understand the function's behavior!

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad