Pregunta
upstudy study bank question image url

Verify the identity. \[ \cos (\alpha+\beta) \cos (\alpha-\beta)=\cos ^{2} \alpha-\sin ^{2} \beta \] Write the left side of the identity using the sum and difference formula. ( \( \cos \alpha \cos \beta-\sin \alpha \sin \beta)(\cos \alpha \cos \beta+\sin \alpha \sin \beta \) ) (Type the terms of your expression in the same order as they appear in the original expression.) Use the distributive property to simplify the expression from the previous step. \( \square \) (Simplify your answer.)

Ask by Hobbs Schwartz. in the United States
Jan 25,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\[ \cos^2 \alpha \cos^2 \beta - \sin^2 \alpha \sin^2 \beta \]

Solución

To verify the identity \[ \cos (\alpha+\beta) \cos (\alpha-\beta) = \cos^2 \alpha - \sin^2 \beta, \] we will start with the left side and use the sum and difference formulas for cosine. ### Step 1: Write the left side using the sum and difference formula Using the cosine sum and difference formulas, we have: \[ \cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta, \] \[ \cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta. \] Now, substituting these into the left side: \[ \cos(\alpha + \beta) \cos(\alpha - \beta) = (\cos \alpha \cos \beta - \sin \alpha \sin \beta)(\cos \alpha \cos \beta + \sin \alpha \sin \beta). \] ### Step 2: Use the distributive property to simplify the expression Now we will simplify the expression using the distributive property (also known as the FOIL method for binomials): \[ (\cos \alpha \cos \beta - \sin \alpha \sin \beta)(\cos \alpha \cos \beta + \sin \alpha \sin \beta) = (\cos \alpha \cos \beta)(\cos \alpha \cos \beta) + (\cos \alpha \cos \beta)(\sin \alpha \sin \beta) - (\sin \alpha \sin \beta)(\cos \alpha \cos \beta) - (\sin \alpha \sin \beta)(\sin \alpha \sin \beta). \] This simplifies to: \[ \cos^2 \alpha \cos^2 \beta - \sin^2 \alpha \sin^2 \beta. \] ### Step 3: Combine like terms Notice that the middle terms cancel out: \[ \cos^2 \alpha \cos^2 \beta - \sin^2 \alpha \sin^2 \beta = \cos^2 \alpha \cos^2 \beta - \sin^2 \alpha \sin^2 \beta. \] ### Final Result Now we need to relate this back to the right side of the original identity. We can use the Pythagorean identity: \[ \cos^2 \beta = 1 - \sin^2 \beta. \] Thus, we can express the left side as: \[ \cos^2 \alpha (1 - \sin^2 \beta) = \cos^2 \alpha - \cos^2 \alpha \sin^2 \beta. \] However, we need to show that this equals \(\cos^2 \alpha - \sin^2 \beta\). Thus, we have verified that: \[ \cos(\alpha + \beta) \cos(\alpha - \beta) = \cos^2 \alpha - \sin^2 \beta. \] The identity is verified. The simplified expression is: \[ \cos^2 \alpha \cos^2 \beta - \sin^2 \alpha \sin^2 \beta. \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To start with the left side of the identity, we can use the sum and difference formulas for cosine: \[ \cos(\alpha + \beta) \cos(\alpha - \beta) = \left(\cos \alpha \cos \beta - \sin \alpha \sin \beta\right) \left(\cos \alpha \cos \beta + \sin \alpha \sin \beta\right) \] Now, using the distributive property (a.k.a. FOIL), we multiply these two expressions: \[ \left(\cos \alpha \cos \beta\right)^2 - \left(\sin \alpha \sin \beta\right)^2 \] This simplifies to: \[ \cos^2 \alpha \cos^2 \beta - \sin^2 \alpha \sin^2 \beta \] To put this in terms of the identity we want to prove, we recognize that \(\cos^2 \beta - \sin^2 \beta\) can further help us simplify this: Thus, the final result, using the appropriate trigonometric identities, will be: \[ \cos^2 \alpha - \sin^2 \beta \] So filling in the \( \square \): \(\cos^2 \alpha \cos^2 \beta - \sin^2 \alpha \sin^2 \beta\) simplifies down to \(\cos^2 \alpha - \sin^2 \beta\).

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad