Pregunta
upstudy study bank question image url

Sketching the graph of \( y=\sin (x+c) \) or \( y=\cos (x+c) \) Graph the trigonometric function. \[ y=\cos \left(x+\frac{2 \pi}{3}\right) \] Plot all points corresponding to \( x \)-intercepts, minima, and maxima within one cycle. Then click on the graph-a-function button.

Ask by Rogers Bright. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

To graph \( y = \cos\left(x + \frac{2\pi}{3}\right) \) within one cycle \([0, 2\pi)\), plot the following key points: - **Maximum**: \( \left(\frac{4\pi}{3}, 1\right) \) - **Minimum**: \( \left(\frac{\pi}{3}, -1\right) \) - **X-Intercepts**: \( \left(\frac{5\pi}{6}, 0\right) \) and \( \left(\frac{11\pi}{6}, 0\right) \) Draw the cosine curve connecting these points, ensuring the graph is shifted left by \( \frac{2\pi}{3} \) and oscillates between \( -1 \) and \( 1 \).

Solución

To graph the trigonometric function \( y = \cos\left(x + \frac{2\pi}{3}\right) \) within one cycle \([0, 2\pi)\), follow these steps to identify and plot the key points: **x-intercepts**, **maxima**, and **minima**. ### 1. **Understanding the Function** The function \( y = \cos\left(x + \frac{2\pi}{3}\right) \) is a **cosine function** with: - **Amplitude**: 1 (since there's no coefficient multiplying the cosine) - **Period**: \( 2\pi \) (standard for cosine) - **Phase Shift**: \( -\frac{2\pi}{3} \) (shifted **left** by \( \frac{2\pi}{3} \)) - **Vertical Shift**: 0 (no constant added or subtracted) ### 2. **Identifying Key Points** #### **a. Maxima** - **Cosine reaches its maximum value of 1** when the argument is \( 0 + 2k\pi \) (where \( k \) is an integer). - Set \( x + \frac{2\pi}{3} = 0 \): \[ x = -\frac{2\pi}{3} \] - To find within \([0, 2\pi)\), add \( 2\pi \): \[ x = -\frac{2\pi}{3} + 2\pi = \frac{4\pi}{3} \] - **Maximum Point**: \( \left(\frac{4\pi}{3}, 1\right) \) #### **b. Minima** - **Cosine reaches its minimum value of -1** when the argument is \( \pi + 2k\pi \). - Set \( x + \frac{2\pi}{3} = \pi \): \[ x = \pi - \frac{2\pi}{3} = \frac{\pi}{3} \] - **Minimum Point**: \( \left(\frac{\pi}{3}, -1\right) \) #### **c. X-Intercepts** - **Cosine equals zero** when the argument is \( \frac{\pi}{2} + k\pi \). 1. **First X-Intercept:** \[ x + \frac{2\pi}{3} = \frac{\pi}{2} \Rightarrow x = \frac{\pi}{2} - \frac{2\pi}{3} = -\frac{\pi}{6} \] Adjusting to \([0, 2\pi)\): \[ x = -\frac{\pi}{6} + 2\pi = \frac{11\pi}{6} \] - **First X-Intercept**: \( \left(\frac{11\pi}{6}, 0\right) \) 2. **Second X-Intercept:** \[ x + \frac{2\pi}{3} = \frac{3\pi}{2} \Rightarrow x = \frac{3\pi}{2} - \frac{2\pi}{3} = \frac{5\pi}{6} \] - **Second X-Intercept**: \( \left(\frac{5\pi}{6}, 0\right) \) ### 3. **Plotting the Graph** Here's a step-by-step guide to sketch the graph: 1. **Draw the Axes:** - Horizontal axis (\( x \)) from \( 0 \) to \( 2\pi \). - Vertical axis (\( y \)) from \( -1.5 \) to \( 1.5 \). 2. **Plot the Key Points:** - **Maximum** at \( \left(\frac{4\pi}{3}, 1\right) \). - **Minimum** at \( \left(\frac{\pi}{3}, -1\right) \). - **X-Intercepts** at \( \left(\frac{5\pi}{6}, 0\right) \) and \( \left(\frac{11\pi}{6}, 0\right) \). 3. **Draw the Cosine Curve:** - Start from the maximum point. - Decrease to the x-intercept at \( \frac{5\pi}{6} \). - Reach the minimum at \( \frac{\pi}{3} \). - Increase to the x-intercept at \( \frac{11\pi}{6} \). - Return to the maximum at \( \frac{4\pi}{3} \). ### 4. **Visual Representation** While I can't provide an interactive graph here, below is a **schematic representation** of the graph: ``` y | 1 | * (4π/3, 1) | / \ | / \ 0 |--------*-----*---------> x | (5π/6,0) (11π/6,0) -1| \ / | \ / | * (π/3, -1) | ``` ### 5. **Summary of Key Points** | Type | \( x \)-value | \( y \)-value | Coordinates | |------------|-------------------------|---------------|-------------------------| | **Maximum**| \( \frac{4\pi}{3} \) | 1 | \( \left(\frac{4\pi}{3}, 1\right) \) | | **Minimum**| \( \frac{\pi}{3} \) | -1 | \( \left(\frac{\pi}{3}, -1\right) \) | | **X-Intercepts** | \( \frac{5\pi}{6} \), \( \frac{11\pi}{6} \) | 0 | \( \left(\frac{5\pi}{6}, 0\right) \), \( \left(\frac{11\pi}{6}, 0\right) \) | ### 6. **Final Notes** - **Periodicity**: The graph repeats every \( 2\pi \). - **Phase Shift**: The entire graph is shifted to the **left** by \( \frac{2\pi}{3} \) compared to the standard cosine function \( y = \cos(x) \). - **Amplitude and Vertical Shift**: Since the amplitude is 1 and there's no vertical shift, the graph oscillates between \( -1 \) and \( 1 \) without moving up or down. By plotting these points and following the cosine wave's shape, you can accurately sketch the graph of \( y = \cos\left(x + \frac{2\pi}{3}\right) \) within one cycle.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To sketch the graph of the function \( y=\cos \left(x+\frac{2 \pi}{3}\right) \), first, identify the key features of the cosine function. The basic cosine curve starts at its maximum of 1 when \( x=0 \) and typically oscillates between 1 and -1 with a period of \( 2\pi \). However, with the horizontal shift of \( -\frac{2 \pi}{3} \), the entire graph will slide to the left by that amount. To find critical points within one cycle (from \( x=0 \) to \( x=2\pi \)): 1. **Maxima** occurs at \( x = -\frac{2\pi}{3} + 2k\pi \) for integers \( k \). The first maximum in the interval is at \( x \approx 1.43 \) (substituting \( k=1 \)). 2. **Minima** occurs at \( x = \frac{\pi}{3} + 2k\pi \), with the first minimum at \( x = \frac{\pi}{3} \approx 1.05 \). 3. **X-intercepts** can be found using \( x + \frac{2\pi}{3} = \frac{\pi}{2} + k\pi \), which leads to intercepts at \( x = -\frac{\pi}{6} \approx -0.52 \) and other points based on the periodicity. Once you've plotted those points, the graph should show a beautiful wave pattern typical of a cosine function, peaking above and dipping below the x-axis in a regular cycle. Click the graph-a-function button to see the magic unfold!

preguntas relacionadas

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad