Pregunta
upstudy study bank question image url

Find the signs of the six trigonometric function values for the given angle, \( -242^{\circ} \) The trigonometric function value of \( \sin \left(-242^{\circ}\right) \) is positive, \( \cos \left(-242^{\circ}\right) \) is negative, and \( \tan \left(-242^{\circ}\right) \) is negative. The trigonometric function value of \( \csc \left(-242^{\circ}\right) \) is \( \square \sec \left(-242^{\circ}\right) \) is Part 2 of 2

Ask by Peters Riley. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

For the angle \( -242^{\circ} \): - \( \sin(-242^{\circ}) \) is positive. - \( \cos(-242^{\circ}) \) is negative. - \( \tan(-242^{\circ}) \) is negative. - \( \csc(-242^{\circ}) \) is positive. - \( \sec(-242^{\circ}) \) is negative. - \( \cot(-242^{\circ}) \) is negative.

Solución

To determine the signs of all six trigonometric functions for the angle \( -242^{\circ} \), let's analyze the angle step by step. ### Step 1: Determine the Equivalent Positive Angle First, find the positive coterminal angle for \( -242^{\circ} \): \[ -242^{\circ} + 360^{\circ} = 118^{\circ} \] So, \( -242^{\circ} \) is coterminal with \( 118^{\circ} \). ### Step 2: Identify the Quadrant The angle \( 118^{\circ} \) lies in the **Second Quadrant** (between \( 90^{\circ} \) and \( 180^{\circ} \)). ### Step 3: Determine the Signs of the Trigonometric Functions in the Second Quadrant | Function | Sign in Second Quadrant | |----------|-------------------------| | \( \sin \) | Positive | | \( \cos \) | Negative | | \( \tan \) | Negative | | \( \csc \) | Positive | | \( \sec \) | Negative | | \( \cot \) | Negative | ### Step 4: Apply to \( -242^{\circ} \) 1. **Sine and Cosecant:** - \( \sin(-242^{\circ}) = \sin(118^{\circ}) \) is **Positive**. - \( \csc(-242^{\circ}) = \csc(118^{\circ}) \) is **Positive**. 2. **Cosine and Secant:** - \( \cos(-242^{\circ}) = \cos(118^{\circ}) \) is **Negative**. - \( \sec(-242^{\circ}) = \sec(118^{\circ}) \) is **Negative**. 3. **Tangent and Cotangent:** - \( \tan(-242^{\circ}) = \tan(118^{\circ}) \) is **Negative**. - \( \cot(-242^{\circ}) = \cot(118^{\circ}) \) is **Negative**. ### Summary of Signs - \( \sin(-242^{\circ}) \) : **Positive** - \( \cos(-242^{\circ}) \) : **Negative** - \( \tan(-242^{\circ}) \) : **Negative** - \( \csc(-242^{\circ}) \) : **Positive** - \( \sec(-242^{\circ}) \) : **Negative** - \( \cot(-242^{\circ}) \) : **Negative** ### Final Answer - **Cosecant:** \( \csc(-242^{\circ}) \) is **positive**. - **Secant:** \( \sec(-242^{\circ}) \) is **negative**.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the signs of the remaining trigonometric functions, we can use the relationships between them and the information given. Since sine is positive, cosecant (the reciprocal of sine) will also be positive. For cosine, we know it’s negative, and therefore, secant (the reciprocal of cosine) will also be negative. This means: - \( \csc\left(-242^\circ\right) \) is positive - \( \sec\left(-242^\circ\right) \) is negative So, putting this all together, the signs of the six trigonometric functions for the angle \( -242^{\circ} \) are: - \( \sin(-242^\circ) > 0 \) - \( \cos(-242^\circ) < 0 \) - \( \tan(-242^\circ) < 0 \) - \( \csc(-242^\circ) > 0 \) - \( \sec(-242^\circ) < 0 \) - \( \cot(-242^\circ) > 0 \) (since cotangent is the ratio of cosine to sine, it takes the sign of sine which is positive when sine is positive)

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad