Pregunta
upstudy study bank question image url

Solve the equation for all real solutions in simplest form. \[ x^{2}-7 x+2=0 \]

Ask by Medina Todd. in the United States
Jan 22,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The solutions are \( x = \frac{7 + \sqrt{41}}{2} \) and \( x = \frac{7 - \sqrt{41}}{2} \).

Solución

To solve the quadratic equation: \[ x^{2} - 7x + 2 = 0 \] we can use the **quadratic formula**, which is given by: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] For the equation \( ax^2 + bx + c = 0 \): - \( a = 1 \) - \( b = -7 \) - \( c = 2 \) Plugging these values into the quadratic formula: \[ x = \frac{-(-7) \pm \sqrt{(-7)^2 - 4(1)(2)}}{2(1)} = \frac{7 \pm \sqrt{49 - 8}}{2} = \frac{7 \pm \sqrt{41}}{2} \] So, the solutions are: \[ x = \frac{7 + \sqrt{41}}{2} \quad \text{and} \quad x = \frac{7 - \sqrt{41}}{2} \] **Final Answer:** All real solutions are (7 ± √41) divided by two. In symbols, x = ( 7 ± √41 ) ⁄ 2

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To solve the quadratic equation \( x^{2}-7 x+2=0 \), we can use the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 1 \), \( b = -7 \), and \( c = 2 \). First, calculate the discriminant: \[ b^2 - 4ac = (-7)^2 - 4(1)(2) = 49 - 8 = 41 \] Now substitute into the quadratic formula: \[ x = \frac{7 \pm \sqrt{41}}{2} \] Thus, the solutions in simplest form are: \[ x = \frac{7 + \sqrt{41}}{2} \quad \text{and} \quad x = \frac{7 - \sqrt{41}}{2} \]

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad