Pregunta
upstudy study bank question image url

\( \left. \begin{array} { l } { ( x - 4 ) ^ { 2 } = } \\ { ( 2 x + 3 ) ^ { 2 } = } \end{array} \right. \)

Ask by Frazier Daniels. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

There are no solutions for \(x\) that satisfy both equations simultaneously.

Solución

Solve the system of equations by following steps: - step0: Solution: \(\left\{ \begin{array}{l}\left(x-4\right)^{2}=0\\\left(2x+3\right)^{2}=0\end{array}\right.\) - step1: Calculate: \(\left\{ \begin{array}{l}x=4\\x=-\frac{3}{2}\end{array}\right.\) - step2: Find the intersection: \(x \in \varnothing \) The system of equations given is: 1. \( (x - 4)^{2} = 0 \) 2. \( (2x + 3)^{2} = 0 \) Let's analyze each equation step by step. ### Step 1: Solve the first equation The first equation can be simplified as follows: \[ (x - 4)^{2} = 0 \] Taking the square root of both sides gives: \[ x - 4 = 0 \] Thus, we find: \[ x = 4 \] ### Step 2: Solve the second equation Now, let's solve the second equation: \[ (2x + 3)^{2} = 0 \] Taking the square root of both sides gives: \[ 2x + 3 = 0 \] Solving for \(x\): \[ 2x = -3 \implies x = -\frac{3}{2} \] ### Step 3: Combine the results The solutions we found are: - From the first equation: \( x = 4 \) - From the second equation: \( x = -\frac{3}{2} \) However, since these two values of \(x\) do not satisfy both equations simultaneously, the system has no common solution. ### Conclusion The result of the system of equations is: \[ x \in \varnothing \] This means there are no values of \(x\) that satisfy both equations at the same time.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

First, let’s solve the two equations step by step. For the first equation \( (x - 4)^2 = 0 \), take the square root of both sides to get \( x - 4 = 0 \), which simplifies to \( x = 4 \). Now, for the second equation \( (2x + 3)^2 = 0 \), similarly, taking the square root gives \( 2x + 3 = 0 \). Solving for \( x \) here leads us to \( 2x = -3 \), so \( x = -\frac{3}{2} \). Now we’ve found our two solutions: \( x = 4 \) and \( x = -\frac{3}{2} \).

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad